
Accurate Generation of Trigger-Action Programs with
Domain-Adapted Sequence-to-Sequence Learning

Imam Nur Bani Yusuf, Lingxiao Jiang, David Lo

School of Computing and Information Systems

Singapore Management University, Singapore

imamy.2020@phdcs.smu.edu.sg,lxjiang@smu.edu.sg,davidlo@smu.edu.sg

ABSTRACT
Trigger-action programming allows end users to write event-driven

rules to automate smart devices and internet services. Users can

create a trigger-action program (TAP) by specifying triggers and

actions from a set of predefined functions along with suitable data

fields for the functions. Many trigger-action programming plat-

forms have emerged as the popularity grows, e.g., IFTTT, Microsoft

Power Automate, and Samsung SmartThings. Despite their sim-

plicity, composing trigger-action programs (TAPs) can still be chal-

lenging for end users due to the domain knowledge needed and

enormous search space of many combinations of triggers and ac-

tions. We propose RecipeGen, a new deep learning-based approach

that leverages Transformer sequence-to-sequence (seq2seq) archi-

tecture to generate TAPs on the fine-grained field-level granularity

from natural language descriptions. Our approach adapts autoen-

coding pre-trained models to warm-start the encoder in the seq2seq

model to boost the generation performance. We have evaluated

RecipeGen on real-world datasets from the IFTTT platform against

the prior state-of-the-art approach on the TAP generation task. Our

empirical evaluation shows that the overall improvement against

the prior best results ranges from 9.5%-26.5%. Our results also show

that adopting a pre-trained autoencoding model boosts the MRR@3

further by 2.8%-10.8%. Further, in the field-level generation setting,

RecipeGen achieves 0.591 and 0.575 in terms of MRR@3 and BLEU

scores respectively.

CCS CONCEPTS
• Software and its engineering→ Search-based software en-
gineering; • Information systems → Retrieval models and
ranking; •Computingmethodologies→Machine translation.

KEYWORDS
Trigger-Action Programming, IFTTT, Program Generation, Deep

Learning, Encoder-Decoder

ACM Reference Format:
Imam Nur Bani Yusuf, Lingxiao Jiang, David Lo. 2022. Accurate Generation

of Trigger-Action Programs with Domain-Adapted Sequence-to-Sequence

Learning . In 30th International Conference on Program Comprehension (ICPC

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPC ’22, May 16–17, 2022, Virtual Event, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9298-3/22/05. . . $15.00

https://doi.org/10.1145/3524610.3527922

’22), May 16–17, 2022, Virtual Event, USA.ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3524610.3527922

1 INTRODUCTION
End-user programming is to make computer programming more

accessible to all people, especially those who have a background

outside of Computer Science [1]. One approach for this is to create

a higher-level abstraction to hide the low-level detail of a program-

ming language. In this work, we are interested in a simple yet useful

type of programming called trigger-action programming.

Trigger-action programming allows end-users to write event-

driven rules to automate smart devices and internet services [2].

Users can create a Trigger-Action Program (or simply TAP) by spec-

ifying some triggers and actions from a set of predefined trigger and

action functions. For example, a TAP can be expressed as an if-then

conditional rule as follows, "IF trigger condition is satisfied, THEN

execute the action." Many trigger-action programming platforms

have emerged as the popularity of IoT (Internet of Things) grows,

such as IFTTT [3], Olisto [4], Integromat [5], Zapier [6], Microsoft

Power Automate [7], Home Assistant [8], and OpenHAB [9].

Writing TAPs can still be challenging for end-users due to the

enormous search space and the domain knowledge needed for all

the triggers and actions. To exemplify, the number of available

services (e.g., Gmail, DropBox, Philips Hue Bulb, WeMo Smart

Plug) in IFTTT by 2017 was 408 [10], resulting in 468,930 possible

combinations of trigger and action functions. By June 2021, the

number increases to 1,386 [3]. The study conducted by Corno et

al. [11] shows that users may not be aware of the usable trigger

and action functions due to the many services available.

We focus on TAPs from the IFTTT platform in this work due

to the following reasons. First, it is popular and has a large user

base [10, 12]. Second, it supports more than 1300 channels as of June

2021. Last, a few prior studies on IFTTT [10, 13] have made some

IFTTT datasets publicly available and it has been widely used on

other TAP generation studies [14, 15]. Our study can be applied to

other platforms even thoughwe focus on a specific platform because

the other aforementioned platforms work similarly as IFTTT; users

compose TAPs by specifying triggers followed by actions.

The current state-of-the-art on automatic TAP generation is La-

tent Attention Model (LAM) [14]. LAM takes a natural language

description of the intended TAP as the input, and identifies the

required trigger and action functions to form the target TAP. LAM

frames the problem as a multi-class classification task, where a

number of disjoint classifiers are trained separately to classify the

trigger and action to which the input description may belong. LAM

performs poorly when an input description does not describe the

intended functionality explicitly, or when the description is vague

https://doi.org/10.1145/3524610.3527922
https://doi.org/10.1145/3524610.3527922

ICPC ’22, May 16–17, 2022, Virtual Event, USA Imam Nur Bani Yusuf, Jiang Lingxiao, David Lo

or incomplete even though it outperforms prior approaches [13, 15].

We refer to such a description as an unclear description. An example

of unclear descriptions is shown in Figure 1. The first description

mentions "photo tagged with me" in the context of "fb" and "drop-

box"; it does not explicitly mention "file" or any function of the

Facebook and Dropbox. Given the description, a TAP generation

model thus needs to learn implicit relations between "photo" and

"file", between "me" and "you", between "Facebook"/"Dropbox" and

"url", in order to identify the right functions to use in a TAP. Learn-

ing to classify the trigger and action functions disjointedly hinders

LAM from leveraging many implicit relations between the trig-

ger and action functions, limiting its TAP generation performance,

especially when the input descriptions are unclear.

Furthermore, when a user uses a function to compose a TAP

(e.g., in Figure 1), the function may require the user to select some

field names and fill in those field names with some values. For

instance, Dropbox.Add_File_From_Url requires the user to specify

the URL source of the image in "File URL", the name of the file in

"File Name", and the target folder in "Folder Path". These field names

are predefined and can be either a required one or an optional one.

Specifying and filling in the field names can be challenging for end-

users due to the domain-knowledge needed. Another limitation of

prior studies [13, 15, 14] is that they only generate the channels

and functions for a given description (which we call function-level
generation). Our approach also addresses this problem, aiming to

generate TAPs with the needed field names too (which we call field-
level generation). Generating the field names automatically can

lessen the burden of end-users as they do not need to worry about

the background knowledge needed to determine the relevant field

names based on the given description and the selected function.

This paper presents RecipeGen, a deep learning-based approach

that allows users to automatically generate TAPs using natural

language descriptions. Different from prior studies which formulate

TAP generation as a classification task [13, 15, 14], RecipeGen

frames the problem as a sequence learning and generation task.

RecipeGen leverages Transformer sequence-to-sequence (seq2seq)

architecture [16] to translate an input description into a sequence

of triggers and actions. We demonstrate that framing the problem

as sequence learning is better than classification because sequence

learning allows the model to leverage implicit relations between

the channels, functions, and fields of triggers and actions.

To boost the generation performance, RecipeGen also adapts an

autoencoding pre-trained model to initialize and warm-start the

parameters of the encoder in the seq2seq model. The intuition of

instantiating the encoder using a pre-trained autoencoding model is

inspired by the fact that the model has been pre-trained using data-

rich corpora such that it has a sense of understanding the meaning

of input descriptions about TAPs even though those data are not

for TAPs. Intuitively, the learning burden of a seq2seq model can

be reduced if the encoder can have such knowledge of the words

and phrases that may appear in TAPs and their descriptions at the

beginning of its training.

We have evaluated RecipeGen against the prior state-of-the-art

LAM [14], on 4 real-world datasets from the IFTTT platforms. Our

results demonstrate that RecipeGen, leveraging sequence learning,

consistently outperforms LAM in all datasets in the function-level

generation. Specifically, RecipeGen achieves 0.947 on gold-standard

Description from a User
Saves any photo tagged with me in it on fb to Dropbox

TAP
Trigger : Facebook.You_are_Tagged_in_Photo

Field(s) :

- None

Action : Dropbox.Add_File_From_Url

Field(s) :

- File URL

- File Name

- Folder Path

Figure 1: An example of TAP and its description.

test set and 0.647 on noisy test set in terms of MRR@3. Overall,

the improvement results against LAM ranges from 9.5%-26.5%. Our

results also shows that adopting a pre-trained autoencoding model

boosts the MRR@3 further by 2.8%-10.8%. Further, in the field-level

generation setting that LAM does not address, RecipeGen achieves

0.591 and 0.575 in terms of MRR@3 and BLEU score.

The main contributions of our study are the following.

• We formulate TAP generation as a sequence learning task and

propose RecipeGen, a deep learning-based approach that adapts

Transformer seq2seq architecture to address the task. RecipeGen

can generate TAPs at the fine-grained field-level which the prior

approaches [13, 15, 14] do not address. We make the replication

package of our study, including its source code and datasets for

evaluation, publicly available
1
.

• We adapt existing off-the-shelf pre-trained autoencoding mod-

els to boost the performance of RecipeGen. We also scrutinize

various factors that can affect the efficiency of such adaptation.

• We have evaluated our approach on real-world datasets from

the IFTTT platform. Our results demonstrate that RecipeGen

achieves better performance than the prior state-of-the-art in

both function-level and field-level generation settings.

The rest of the paper is structured as follows. Section 2 covers the

related backgrounds on TAP and Transformer. Section 3 explains

our problem formulation and our proposed approach. Section 4 de-

scribes the experimental settings. Section 5 presents the empirical

results, whereas Section 6 presents the error analysis and the vari-

ous threats to the validity of our study. Section 7 presents related

works in more details. Section 8 concludes our paper.

2 PRELIMINARY
2.1 Trigger Action Program (TAP)
A basic TAP is composed of a trigger and an action expressed in the

form of an if-then conditional rule; "IF trigger condition is satisfied,

THEN execute the action." TAP allows users to build integration

between internet services and/or smart devices [13].

A sample snippet of TAP from IFTTT paired with its natural

language description is shown in Figure 1. The snippet contains

one trigger and one action. Each trigger and action has a channel

and a function component. A channel is an entity that provides

various services. A function is an API that represents a particular

service or channel’s functionality. A function may require the user

to specify some fields from a set of predefined fields to control how

1
https://github.com/imamnurby/RecipeGen-IFTTT-RP

https://github.com/imamnurby/RecipeGen-IFTTT-RP

Accurate Generation of TAPs with Domain-Adapted Sequence-to-Sequence Learning ICPC ’22, May 16–17, 2022, Virtual Event, USA

Table 1: Grammar for a TAP

𝑟𝑒𝑐𝑖𝑝𝑒 ::= ⟨𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝐿𝑖𝑠𝑡 ⟩ ⟨𝑎𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 ⟩
𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝐿𝑖𝑠𝑡 ::= ⟨𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ⟩ | ⟨𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ⟩ ⟨𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝐿𝑖𝑠𝑡 ⟩
𝑎𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 ::= ⟨𝑎𝑐𝑡𝑖𝑜𝑛⟩ | ⟨𝑎𝑐𝑡𝑖𝑜𝑛⟩ ⟨𝑎𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 ⟩

𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ::= ⟨𝑡𝑟𝑖𝑔𝐶ℎ𝑎𝑛𝑛𝑒𝑙 ⟩ ⟨𝑡𝑟𝑖𝑔𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛⟩
𝑎𝑐𝑡𝑖𝑜𝑛 ::= ⟨𝑎𝑐𝑡𝐶ℎ𝑎𝑛𝑛𝑒𝑙 ⟩ ⟨𝑎𝑐𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛⟩

𝑡𝑟𝑖𝑔𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ::= ⟨𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑁𝑎𝑚𝑒 ⟩ ⟨𝑓 𝑖𝑒𝑙𝑑𝐿𝑖𝑠𝑡 ⟩
𝑎𝑐𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ::= ⟨𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑁𝑎𝑚𝑒 ⟩ ⟨𝑓 𝑖𝑒𝑙𝑑𝐿𝑖𝑠𝑡 ⟩

𝑓 𝑖𝑒𝑙𝑑𝐿𝑖𝑠𝑡 ::= ⟨𝑛𝑢𝑙𝑙 ⟩ | ⟨𝑓 𝑖𝑒𝑙𝑑 ⟩ ⟨𝑓 𝑖𝑒𝑙𝑑𝐿𝑖𝑠𝑡 ⟩

exactly the function work. A field is composed of a field name and

a field value. A field can be either a required one or an optional

one. We formalize the representation of a TAP using the grammar

shown in Table 1.

The TAP in Figure 1 leverages "Facebook" and "Dropbox" as the

trigger channel and action channel respectively. The trigger func-

tion is "Facebook.You_are_Tagged_in_Photo" and it does not have

any fields. The action function is "Dropbox.Add_File_From_Url"

and it has three fields, i.e., "File URL" that specifies the source of

the file that will be uploaded, "File name" that specifies the name of

the file, and "Folder path" that specifies the upload destination. In

IFTTT, users can write TAP in Figure 1 by specifying each compo-

nent manually through a web-based graphical user interface, and

users may spend sometime before finding the intended channels or

functions due to the large search space [11, 17].

2.2 Transformer-Based Language Model
Transformer seq2seq architecture [16] is illustrated in Figure 2. A

Transformer seq2seq model is composed of encoder and decoder

blocks. Given a description, the tokenizer converts the description

into a sequence of token-ids 𝑥1, 𝑥2, ..., 𝑥𝑛 . The encoder embedding

then converts the sequence of token-ids into the input vectors

𝑥 ′
1
, 𝑥 ′

2
, ..., 𝑥 ′𝑛 . The encoder takes the input vectors and feeds them

to the Self-Attention layer. The output of the encoder is context

vectors 𝑐1, 𝑐2, ..., 𝑐𝑛 . The decoder follows similar steps but has two

differences, i.e., 1) the inputs are the context vectors 𝑐1, 𝑐2, ..., 𝑐𝑛 and

the prior predictions 𝑦1, 𝑦2, ..., 𝑦𝑡−1, and 2) it uses Causal-Attention

layer instead of Self-Attention layer. The output of the decoder

is then converted into the probability distribution over the target

vocabularies using a linear layer called LM Head.

The difference between Self-Attention layer andCausal-Attention

layer is on how the model attends to the tokens. Self-Attention layer

allows a token at position 𝑖 , i.e., 𝑥𝑖 , to attend to both its preced-

ing tokens 𝑥1, 𝑥2, ..., 𝑥𝑖−1 and its succeeding tokens 𝑥𝑖+1, 𝑥𝑖+2, ..., 𝑥𝑛 .
In contrast, Causal-Attention layer only allows 𝑥𝑖 to attend to its

preceding tokens 𝑥1, 𝑥2, ..., 𝑥𝑖−1.
With the progress of transfer learning [18, 19, 20], the research

direction moves towards building a pre-trained model using Trans-

former architectures. A pre-trained model refers to a model that

has been trained on large corpora with certain loss functions. The

idea is to transfer knowledge learned from data-rich corpora in the

pre-training phase to downstream tasks, which often have much

less data available for training.

Many existing pre-trained models adapt Transformer architec-

tures [16]. These models can be classified into three categories [21],

i.e., autoencoding, autoregressive, and seq2seq. Each category is

Figure 2: Transformer seq2seq architecture (simplified). The
dashed line indicates inputs and outputs, while the bold line
indicates the model’s components.

to address different downstream tasks. Autoencoding models are

composed of only the encoder of the seq2seq architecture shown

in Figure 2; these models only leverage the Self-Attention layer,

and are suitable for downstream tasks that require an understand-

ing of the whole context, e.g., defect prediction and clone detec-

tion [22]. Autoregressive models are composed of only the decoder

of the seq2seq architecture; these models only leverage the Causal-

Attention layer, and are suitable for downstream generative tasks

such as code completion [23]. Seq2seq models leverage both the

encoder and decoder blocks [21], and are suitable for converting a

sequence to another sequence, e.g., code generation, code summa-

rization, and code repair [24].

3 APPROACH
This section covers two parts: 1) problem formulation and 2) the

workflow of RecipeGen. The first part covers the formal definition

of sequence learning in TAP and discusses why sequence learning

is well-suited for TAP generation. The second part explains the

workflow of RecipeGen that consists of model initialization, training

stage, and inference stage.

3.1 Problem Formulation
We formulate the problem based on the fact that users follow a

particular event sequence when composing a TAP in a real-world

implementation. Users select a trigger followed by an action. Users

should specify the channel followed by the function and its fields

for each trigger and action. In other words, functions are selected

based on the specified channels, and fields are selected based on

the specified functions and channels. We formalize TAP generation

process as follows,

𝑦 = argmax

𝑦
𝑃 (𝑦𝑡 |𝑦<𝑡 , 𝐼) (1)

where 𝑦𝑡 denotes the probability distribution over the target com-

ponents (i.e., channels, functions, and fields) at the time step 𝑡 , 𝑦<𝑡
is the sequence of the prior predictions, and 𝐼 is the input descrip-

tion. Equation 1 illustrates that the prediction for the current time

step 𝑡 is based on the sequence of the predictions at the previous

time steps (𝑦<𝑡) and the input description 𝐼 . Such a problem for-

mulation conforms to the steps of composing TAP in a real-world

ICPC ’22, May 16–17, 2022, Virtual Event, USA Imam Nur Bani Yusuf, Jiang Lingxiao, David Lo

Figure 3: RecipeGen’s workflow.

implementation. We believe that sequence learning is a better for-

mulation than classification-based approaches proposed in the prior

studies [13, 14, 15] because sequence learning allows the model

to capture the implicit conditional relationship between the target

components, and it is easily applicable to both function-level and

field-level generation settings, by adjusting the number of time

steps used. In contrast, the prior approaches [13, 14, 15] do not

consider 𝑦<𝑡 ; they generate each trigger and action disjointedly for

a given input description, and do not generate field names.

3.2 RecipeGen
The workflow of RecipeGen is shown in Figure 3. RecipeGen has

three working stages: model initialization, training, and inference.

In the model initialization stage, RecipeGen instantiates a seq2seq

model (see Figure 2) and initializes the encoder with a pre-trained

autoencoding model. In the training stage, RecipeGen trains the

model to translate descriptions in natural language into target TAPs.

In the inference stage, RecipeGen is ready to generate a TAP: it

returns a ranked list containing the most likely top-K TAPs for a

given description describing the functionality of the intended TAP.

3.2.1 Model Initialization. The input of this stage is a configu-

ration file and the output is an initialized but untrained seq2seq

model. First, RecipeGen instantiates the architecture of the encoder

embedding and the encoder block according to the settings in the

configuration file, and loads the model’s vocabularies and the pre-

trained embedding weights, and use these to initialize the encoder

embedding. RecipeGen also loads the tokenizer and configures it

using the model’s vocabularies. Second, RecipeGen loads the pre-

trained weights of the encoder, then use these weights to instantiate

the encoder block. Third, RecipeGen instantiates the architecture

of the decoder block using the same decoder as the decoder of

Transformer seq2seq architecture [16], then initializes the weights

randomly. For the decoder embedding, RecipeGen leverages the

same weights as the encoder embedding to allow the model to

leverage the similarity between the descriptions and the TAP com-

ponents. We observe that the TAP components often resemble a

normal natural language and share the same subwords as the de-

scriptions. For instance, the description in Figure 1 contains two

subwords "photo" and "tagged" of the target trigger function and

another subword "Dropbox" of the target action channel.

3.2.2 Training Stage. To exploit the similarity between the descrip-

tions and the TAPs at the subword-level, we train RecipeGen to

generate TAPs at the subword-level.

The tokenizer converts each word in a description to the corre-

sponding token ids. For TAP-specific words (e.g., channel names)

Figure 4: An example of beam search with beam width=2.
The bold line indicates the actual expansion.

that do not exist in the vocabulary, the tokenizer breaks down

such words into a sequence of valid subwords that exist in the

vocabulary, where the smallest unit can be a letter. For example,

"Saves any photo to dropbox" can be tokenized into "S", "aves",

"any", "photo", "to", "drop", "box". Then, each token is converted to

the corresponding token-ids, and is subsequently converted into a

vector by passing the token-ids through the encoder embedding.

The output of the model is represented as an ordered sequence

of 6 components, i.e., 𝑇𝐶 , 𝑇𝐹 , 𝐹𝑁𝑇𝐹 , 𝐴𝐶 , 𝐴𝐹 , 𝐹𝑁𝐴𝐹 , where 𝑇𝐶 is a

trigger channel,𝑇𝐹 is a trigger function, 𝐹𝑁𝑇𝐹 is a sequence of trig-

ger field names, 𝐴𝐶 is an action channel, 𝐴𝐹 is an action function,

and 𝐹𝑁𝐴𝐹 is a sequence of action field names. 𝐹𝑁𝑇𝐹 and 𝐹𝑁𝐴𝐹

can be empty if the function does not have any field names. To

ensure RecipeGen knows to which component a subword belongs,

we insert a special token [SEP] to indicate the beginning of a trigger

channel, a trigger function, an action channel, and an action func-

tion. We also insert [(] and [)] to indicate the beginning and end of

the field names respectively, inside the trigger and action functions.

Lastly, we use [END] to indicate the end of a TAP. The following

sequence illustrates the output of the decoder block in the training

stage: [SEP] Facebook [SEP] Facebook.You_are_Tagged_in_a_Photo

[(] [)] [SEP] Dropbox [SEP] Dropbox.Add_File_from_Url [(] File

URL, File Name, File Path [)] [END]. These special tokens later are

omitted in the final output.

As explained in the prior stage, RecipeGen outputs the prediction

at the subword-level. The TAP in Figure 1 is generated as follows
2
.

𝑇𝐶 [SEP]#Facebook#

𝑇𝐹 [SEP]#Facebook#.#You#_#Are#_#T#agged#_#in#_#Photo#

𝐹𝑁𝑇𝐹 [(]#[)]#

𝐴𝐶 [SEP]#Dropbox#

𝐴𝐹 [SEP]#Dropbox#.#Add#_#File#_#From#_#URL#

𝐹𝑁𝐴𝐹 ([(]#File# #URL#,#File# #Name#,# #File# #Path#[)]#[END]#

3.2.3 Inference Stage. RecipeGen leverages beam search [25] to

generate the target TAP. A sample beam search with beam width 2

is shown in Figure 4. The first time step selects two candidates: 𝐴1

and 𝑍1 as these two have the highest probability; each candidate

in our context can be a subword for a channel, a function, or a

field name, depending on the current time step. At the subsequent

time step (𝑡2), 𝐴1 can be expanded to 𝐴1#𝐴2, 𝐴1#𝐵2, ... 𝐴1#𝑍2. The

same applies to the other candidate 𝑍1. The probability of each

2
RecipeGen does not generate "#" in the actual generation; it is only used to indicate

the generated token in each time step.

Accurate Generation of TAPs with Domain-Adapted Sequence-to-Sequence Learning ICPC ’22, May 16–17, 2022, Virtual Event, USA

Table 2: Dataset Statistics

Statistics

Train Validation Test

Quirk15 Mi17 Merged Train+Field Val15 Val+Field Gold15 Noisy15 Test+Field

#Samples 45,003 107,008 120,794 95,087 1,451 5,283 305 769 5,283

#Trigger channels 112 311 327 307 71 184 51 66 179

#Trigger functions 492 1.040 1.107 1014 211 468 112 170 468

#Trigger fields - - - 338 - 178 - - 182

#Avg. fields/trig. function - - - 1.10 - 1.10 - - 1.10

#Action channels 87 282 288 275 57 170 38 48 164

#Action functions 201 665 687 650 106 296 60 90 279

#Action fields - - - 415 - 244 - - 261

#Avg. fields/act. function - - - 2.31 - 2.33 - - 2.31

expansion candidate is computed by multiplying the probability of

the prior candidates with the current candidates; e.g., the probability

of 𝐴1#𝐴2 is obtained by multiplying the probability of 𝐴1 and 𝐴2

conditioned on the 𝐴1 generated at 𝑡1. The expansion is performed

by taking the top-K candidates with the largest probability, where

K equals to the beam width size. The expansion for a candidate

stops if the model has reached the maximum allowed expansion

length or has generated the special token that indicates the end of

a sequence.

4 EVALUATION
4.1 Dataset
Our study leverages datasets published by Quirk et. al. [13] and

Mi et. al. [10]. Both datasets are curated from the IFTTT platform.

We perform evaluation using four train sets, two validation sets,

and three test sets derived from those datasets. Table 2 presents the

overview of the train, validation, and test sets.

4.1.1 Train Set. We leverage four train sets, i.e., Quirk15, Mi17,

Merged, and Train+Field.

• Quirk15 is comprised of 45K TAPs paired with its descriptions cu-

rated by Quirk et. al. [13]. The number of channels and functions

is the least among all the train sets.

• Mi17 contains 107K TAPs paired with its descriptions curated

by Mi et. al. [10]. This dataset is more recent than Quirk15 and

contains more diverse channels and functions than Quirk15.

• Merged dataset consists of 120K TAPs and its descriptions, ob-

tained by merging Quirk15 and Mi17 datasets. We merge both

datasets to get the maximum number of samples, channels, and

functions. The number of samples is less than the sum of Quirk15

and Mi17 because there is an intersection between both datasets.

• Train+Field is similar to Mi17, but it contains additional informa-

tion about field names. Mi et. al. [10] have prepared their dataset

such that the field names can be obtained easily. We split Mi17

into Train+Field, Val+Field, and Test+Field. We leverage a strati-

fied sampling strategy in the split process, such that descriptions

with different token lengths are equally distributed among the

splits. The number of fields is often smaller than the number of

functions because some functions share similar field names.

Table 3 shows some sample TAPs and their descriptions from

the datasets. The first and second examples illustrate unclear de-

scriptions. Example (1) only mentions the channels’ names with-

out describing the specific functionalities for the trigger and the

action. Inferring the functions is difficult in such a case because

a channel can have several functionalities and these functions

may also have high similarity, e.g., Twitter.Post_a_Tweet and Twit-

ter.Post_a_Tweet_with_image. Example (2) describes the function-

ality without mentioning the channels. Such a case can also be

difficult because different channels may have the same functional-

ity, e.g., WeMo_Switch.Turn_on and WeMo_Smart_Plug.Turn_on.

The examples (3) and (4) illustrate clear descriptions. Both de-

scriptionsmention the channel names and their functionality clearly.

However, we can observe that inferring the field names and values

are challenging in such descriptions because the possible values can

be very sparse and unique for each use case. For example, inferring

the field value for "Select a category" in the example (4) is difficult

because the description does not contain any relevant information.

On the other hand, generating the field names is still possible be-

cause field names are predefined and multiple TAPs may use the

same trigger or action function with the same fields resulting in

some reusable patterns. We only generate field names and leave

the generation of field values as future work.

4.1.2 Validation Set. We use two validation sets, i.e., Val15 and

Val+Field.

• Val15 set contains 1.4K TAPs paired with its descriptions.

Val15 is originally created by Quirk et. al. [13], and is used to

measure how well the model performs under the function-

level generation setting in the training stage.

• Val+Field set contains 5K descriptions and TAPs along with

the field names information. Val+Field is used to measure

howwell themodel performs under the field-level generation

setting in the training stage.

4.1.3 Test Set. We use three test sets in our evaluation, i.e., Gold15,

Noisy15, and Test+Field. Gold15 and Noisy15 test sets are originally

created by Quirk et. al. [13] through a human-annotation process.

• Gold15 set contains 305 TAPs with its gold-standard descriptions.

The annotation process is done by asking Amazon Mechanical

Turk workers to label each description with the corresponding

TAP implementation. The workers label a description that does

not contain enough information to infer the corresponding TAP

with unintelligible. A pair of TAP and its description is included

in the Gold15 set if the pair has at least three workers who agree

to the label. Gold15 set is used to evaluate the model on the ideal

condition where a description contains enough information to

infer both trigger and action correctly.

ICPC ’22, May 16–17, 2022, Virtual Event, USA Imam Nur Bani Yusuf, Jiang Lingxiao, David Lo

Table 3: Examples of Descriptions and the Corresponding TAPs

Description Trigger Action

(1) Morning Android weather Channel: Weather. Channel: Notifications

Function: Today’s_weather_report Function: Send_a_notification_from_the_IFTTT_app

Fields: Time of day Field: Notification

(2) New photos to drive Channel: iOS_Photos Channel: Google_Drive

Function: Any_new_photo Function: Upload_file_from_URL

Fields: - Fields: File URL, File name, Drive folder path

(3) Ask Alexa to "trigger red lights" to Channel: Amazon_Alexa. Channel: Philips_Hue

change phillips hue bulbs to red Function: Say_a_specific_phrase Function: Change_color

Field: What phrase? Fields: Which lights?, Color value or name

(4) If task is completed in todoist, save

it as

Channel: NPR Channel: Evernote

a note in evernote notebook Function: New_story_published Function: Create_a_note()

Field: Select a category Field: Title, Body, Notebook, Tags

• Noisy15 set contains 769 TAPs and its descriptions that undergo

the same labeling process as the Gold15 set. A pair of TAP and its

description is included in the Noisy15 test set if it is not labeled

as unintelligible and has less than three workers who agree to the

label. Noisy15 set is used to mimic a condition where a user does

not know exactly the target channel or function. Both Gold15

and Noisy15 sets are on the function-level granularity.

• Test+Field contains 5K descriptions and TAPs along with the

field names information. Test+Field is used to evaluate the actual

performance of the model in the field-level granularity.

4.2 Experimental Setting
4.2.1 Models. RecipeGen leverages two pre-trained autoencod-

ing models to initialize the encoder weights, i.e., CodeBERT and

RoBERTa, to compare the performance of a model that is specifi-

cally pre-trained on code corpora and a model that is pre-trained

using general English corpora for the TAP generation task. We

choose CodeBERT and RoBERTa as both models have been widely

used in various studies [26, 27, 28].

We use LAM as the baseline. For RecipeGen, we instantiate

three different model variants, i.e., Rand2Rand, Rob2Rand, and

Code2Rand. Each model is described below.

• Rand2Rand. Rand2Rand is a Transformer seq2seq model where

the weights on both the encoder and decoder are randomly-

initialized.

• Rob2Rand. Rob2Rand is a Transformer seq2seqmodel that lever-

ages RoBERTa
3
to initialize the weights of the encoder, while the

weights of the decoder is initialized randomly.

• Code2Rand. Code2Rand is similar with Rob2Rand, but it lever-

ages CodeBERT
4
instead of RoBERTa.

• LAM. LAM5
is the prior state-of-the-art model on TAP gen-

eration task. We have faithfully migrated and reimplemented

LAM which was originally implemented in TensorFlow v0.7 to

TensorFlow v2.5 due to obsolete dependencies.

The hyperparameters used in our evaluation are as follows.

• RecipeGen. The batch size is set to 8 for training, validation, and
testing. The default learning rate is 5x10

−5
, except for Rand2Rand

that is 5x10
−6
. We use a smaller learning rate, for Rand2Rand

3
https://huggingface.co/roberta-base

4
https://huggingface.co/microsoft/codebert-base

5
https://github.com/Jungyhuk/Latent-Attention

because themodels failed to learnwhen using the default learning

rate. We use AdamW
6
as the optimizer with 1000 warming steps.

For the inference, we set the beam width to 10.

• LAM. We use the same hyperparameters and training setting

as described in the original paper [14]. The optimizer is Adam
7

with a learning rate 1x10
−3

and the embedding dimension is 50.

We apply early stopping to prevent overfitting when training both

RecipeGen and LAM.

4.2.2 Evaluation Setting. Our evaluation setting is divided into

function-level and field-level. Each setting is described as follows.

• Function-level.We train each model on Quirk15, Mi17, Merged

training sets separately and we validate the model using Val15

set. The evaluation is performed on both Gold15 and Noisy15

sets.

• Field-level. We train all models except LAM using Train+Field

set. We use Val+Field and Test+Field to validate and test each

model respectively. We do not train LAM in this setting because

LAM is not designed to generate fields.

For each train, validation, and test set, the descriptions are lower-

cased and non-ASCII characters are removed. Non-English descrip-

tions are also omitted. We use langdetect
8
to detect the language of

each description. We run all experiments on a computer running

Ubuntu 18.04 with Intel(R) Core(TM) i7-10700K CPU @ 3.80GHz

processor, 64GB RAM, and NVIDIA GeForce RTX 3070 8GB.

4.3 Metrics
We evaluate the performance of all models across different datasets

using Mean Reciprocal Rank (MRR) and BLEU score.

Mean Reciprocal Rank (MRR) is the average of reciprocal

ranks of results from a set of queries 𝑄 [29]. MRR has been widely

used to evaluate systems that return a ranked list as the output [30,

31, 32, 29]. MRR@k is computed using Equation 2:

𝑀𝑅𝑅@𝑘 =
1

|𝑄 |

|𝑄 |∑︁
𝑖=1

1

𝑟𝑎𝑛𝑘𝑖
(2)

6
https://huggingface.co/docs/transformers/main_classes/optimizer_schedules#

transformers.AdamW

7
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam

8
https://pypi.org/project/langdetect/

https://huggingface.co/roberta-base
https://huggingface.co/microsoft/codebert-base
https://github.com/Jungyhuk/Latent-Attention
https://huggingface.co/docs/transformers/main_classes/optimizer_schedules#transformers.AdamW
https://huggingface.co/docs/transformers/main_classes/optimizer_schedules#transformers.AdamW
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam
https://pypi.org/project/langdetect/

Accurate Generation of TAPs with Domain-Adapted Sequence-to-Sequence Learning ICPC ’22, May 16–17, 2022, Virtual Event, USA

Table 4: Improvement ofMRR@3 onGold15 andNoisy15. For
each test set (Gold15 and Noisy15), we compare all RecipeGen
variants against LAM and Rand2Rand (R2R). The bold num-
bers denotes the highest value.

Model Train Set

MRR@3 Improvement (%)

Gold15 Noisy15

LAM R2R LAM R2R

Rand2Rand

Merged

9.5 - 20.8 -

Rob2Rand 13.3 3.6 24.4 3.6

Code2Rand 12.8 3.2 24.2 3.4

Rand2Rand

Mi17

11.2 - 22.7 -

Rob2Rand 14.6 2.8 26.5 3.8

CodeBERT 15.7 4.0 26.4 3.7

Rand2Rand

Quirk15

9.5 - 16.1 -

Rob2Rand 20.6 10.8 24.2 8.1
Code2Rand 18.6 8.9 23.6 7.5

where rank𝑖 indicates the first rank of the first hit or relevant result.

The value of
1

𝑟𝑎𝑛𝑘𝑖
is 0 if the ground truth is not in the top-K

returned TAPs. MRR@K ranges from 0 to 1. From a user’s point of

view, the higher the MRR is, the better, as the reciprocal of MRR

indicates the average number of predictions that a user needs to

investigate to find the correct one. We only report the result at k=3

due to the page limitation
9
.

BLEU score is the hits of n-grams of translation results with

its ground truths [33]. BLEU score has been widely used to eval-

uate the performance of various translation systems on software

engineering [34, 35, 36]. BLEU score is computed using Equation 3:

𝐵𝐿𝐸𝑈 = 𝐵𝑃 exp

𝑁∑︁
𝑛=1

𝑤𝑛 log𝑝𝑛 (3)

where 𝑝𝑛 is the n-grams precision, 𝑁 is the maximum number of

grams, and 𝐵𝑃 is the penalty score for short translation results.

𝐵𝑃 equals to 1 if the length of translation results 𝑐 is longer than

the ground truth 𝑟 ; otherwise, it is equals to exp(1−
𝑟
𝑐
)
. BLEU score

ranges from 0 to 1 and we report the result at N=4 (i.e., BLEU-4).

Higher BLEU score is better; it means that the translation result is

more similar to the ground truth.

5 EMPIRICAL RESULTS
5.1 How does the Transformer seq2seq-based

models perform on TAP generation task?
5.1.1 Function-level Evaluation. Formulating the problem as a se-

quence learning task yields better performance than as a classi-

fication task. Figure 5 shows that all variants of RecipeGen (i.e.,

Rand2Rand, Rob2Rand, and Code2Rand) trained across different

datasets consistently outperform LAM on both Gold15 and Noisy15

sets in terms of MRR@3 and BLEU score. The results in Table 4

also illustrates that all variants of RecipeGen have significant im-

provements against LAM in terms of MRR@3. The improvements

of all variants of RecipeGen over LAM range from 9.5%-20.6% on

Gold15 set and 16.1%-26.5% on Noisy15 set. These results indicate

that RecipeGen can deal with unclear descriptions better than LAM.

9
We attach more comprehensive results using different values of k in our replication

package at https://github.com/imamnurby/RecipeGen-IFTTT-RP

Table 5: TAP generation results on field-level. Each model is
trained on theTrain+Field set and evaluated on theTest+Field
set. R2R indicates Rand2Rand. The bold numbers denotes
the highest value.

Improvement over R2R

Models MRR@3 BLEU-4

MRR@3 (%) BLEU-4 (%)

Rand2Rand 0.555 0.536 - -

Rob2Rand 0.588 0.571 3.3 3.5

Code2Rand 0.591 0.575 3.6 3.9

Takeaway 1: All variants of RecipeGen trained across different dataset
consistently outperform LAM on both Gold15 and Noisy15 sets in

terms of MRR@3 and BLEU score. The improvement of all variants

of RecipeGen over LAM ranges from 9.5%-20.6% on Gold15 set and

16.1%-26.5% on Noisy15 set.

Both Rob2Rand and Code2Rand perform better than Rand2Rand

on both Gold15 and Noisy15 sets, as shown in Figure 5, although the

performance improvement is sometimes small. Table 4 illustrates

that both Rob2Rand and Code2Rand that are trained on Mi17 and

Merged sets have lower improvement than models that are trained

on Quirk15 set on both Gold15 and Noisy15 sets. For instance,

Rand2Rand trained on Quirk15 achieves 0.812 in terms of MRR@3

(see Figure 5, top-left). When Rand2Rand trained on Merged set, the

MRR@3 increases significantly to 0.909. The evaluation on Noisy15

set (see Figure 5, bottom-left) also shows the same trend.

The implications of such results are the following. Firstly, the

diversity of the channels and functions does not hurt the perfor-

mance because both Mi17 and Merged sets have a higher number

of channels and function than Quirk15 and our results show that

the performance of the models trained either on Mi17 or Merged

sets are better than the models trained on Quirk15. Secondly, the

improvement of using a pre-trained autoencoding model is higher

in the limited data setting as Quirk15 set has much fewer samples

than both Mi17 and Merged set. Table 4 shows that the overall

MRR@3 improvement is higher on both Gold15 and Noisy15 sets

when Quirk15 is used as the train set.

Takeaway 2: The improvement of leveraging a pre-trained autoen-

coding model to initialize the weights of the encoder in a seq2seq

model is higher in the limited training data setting.

5.1.2 Field-level Evaluation. Table 5 shows our experiment results

on the field-level. In terms of MRR@3, Rand2Rand achieves 0.555.

This number means that the correct TAP is most likely located

at half of the returned results before finding the relevant TAPs.

We believe that this number is still acceptable for users. Similarly,

Rand2Rand achieves 0.536 in terms of BLEU score. Leveraging

RoBERTa and CodeBERT can improve the MRR@3 and BLEU score

by 3.3%-3.9%. Also, note that these results are obtained by evalu-

ating the model on Test+Field set that is not annotated by human.

Therefore, there is a possibility that this test set contain more un-

clear descriptions than Noisy15.

Takeaway 3: Rand2Rand can achieve 0.555 and 0.536 in terms of

MRR@3 and BLEU score. Instantiating the encoder with a pre-trained

autoencoding model can improve the performance by 3.3%-3.6% in

terms of MRR@3 and 3.5%-3.9% in terms of BLEU score.

ICPC ’22, May 16–17, 2022, Virtual Event, USA Imam Nur Bani Yusuf, Jiang Lingxiao, David Lo

Figure 5: TAP generation results on function-level. Each model is trained on Quirk15, Mi17, Merged sets separately. The
evaluation is performed on Gold15 (top) and Noisy15 (bottom) sets.

5.2 Does leveraging CodeBERT yield better
performance improvement than RoBERTa?

Figure 5 shows that both Code2Rand and Robe2Rand yield com-

petitive performance. We perform paired t-test to confirm whether

the performance difference between Code2Rand and Rob2Rand is

statistically significant. The differences on both Gold15 and Noisy15

are not statistically significant. The p-value on Gold15 and Noisy15

is 0.467 and 0.189 respectively. The possible reasons are the fol-

lowing. First, the corpora used in the pre-training phase may have

different characteristics than TAP-related corpora. For instance,

our datasets may contain domain-specific words such as channel

or function names. Secondly, the objectives used to pre-train Code-

BERT and RoBERTa are not designed for generation tasks. Although

both models do not yield significant performance differences, the

performance is still better than LAM as shown in Figure 5.

Takeaway 4: Both Rob2Rand and Code2Rand models perform better

than LAM in terms of MRR@3 and BLEU. The two models do not

have statistically significant performance differences.

6 DISCUSSION
We analyze some errors generated by RecipeGen to understand

their causes. We also discuss implications and limitations of our

study. Such discussions may be useful for future improvement work.

6.1 Error Analysis
6.1.1 Function-level. We pick the best-performing seq2seq models,

i.e., Rob2Rand, and compare the accuracy of the individual compo-

nents with LAM. We compute the accuracy by dividing the number

Table 6: Individual accuracy on Rob2Rand and LAM. Both
models are trained on the Merged set. CH is channel, while
FN is function.

Level Test Set Model

Accuracy (%)

Trigger Action

CH FN CH FN

Function

Gold

Rob2Rand 97.0 93.4 99.7 97.0

LAM 85.6 72.6 82.3 74.8

Noisy

Rob2Rand 95.1 88.5 96.1 94.4

LAM 81.2 66.4 76.4 67.4

Field Test+Field

Rob2Rand 79.0 68.1 73.0 65.3

Code2Rand 78.5 67.5 73.7 66.0

of hits in the top-1 prediction by the total number of samples in

the test set. In the function-level, Rob2Rand outperforms LAM in

terms of individual accuracy in all of the components, as shown in

Table 6. Such results corroborate our previous results in Section 4.

We classify the possible errors into three cases as follows. ✓ indi-

cates a correct prediction, while ✗ indicates an incorrect prediction.

Case 1: Channel ✓ and Function ✗. Two possible reasons for

Case 1 error are 1) users mention only the channel names without

describing the specific functionalities in the descriptions, and 2) the

description for the functionality is too coarse-grained. For trigger,

the number of such cases on Rob2Rand and LAM is 100 and 140 cases

respectively out of 769 total samples. For action, Rob2Rand and

LAM results 58 and 98 cases respectively out of 769 total samples.

The example of Case 1 error is shown in Figure 6.

Case 2: Channel ✗ and Function ✓. The reason for Case 2

error is because users only describe the functionalities without

mentioning the channel names. Multiple channels may have the

Accurate Generation of TAPs with Domain-Adapted Sequence-to-Sequence Learning ICPC ’22, May 16–17, 2022, Virtual Event, USA

Send the github issues you’re assigned to onenote

Ground Truth

Action channel : OneNote

Action function : OneNote.Create_a_page_from_a_link

Prediction

Action channel : OneNote

Action function : OneNote.OneNote.Create_a_page

Figure 6: Case 1 error; the action channel is correct and the
action function is incorrect. The functionality description of
action channel is not well-described and the action channel
have similar functions with different granularity.

same or similar functionalities, as mentioned earlier. Rob2Rand does

not yield any errors from this category. In contrast, LAM yields 26

and 29 cases for the trigger and action respectively out of 769 total

samples. The example of Case 2 error is shown in Figure 7.

Send a notification if i don’t get enough sleep

Ground Truth

Trigger channel : Fitbit

Trigger function : Fitbit.Sleep_duration_below

Prediction

Trigger channel : UP_by_Jawbone

Trigger function : Fitbit.Sleep_duration_below Notifications

Figure 7: Case 2 error; the trigger channel is incorrect and the
trigger function is correct. Both Fitbit and UP by Jawbone are
fitness tracker services that have sleep-related functionality.

Case 3: Channel ✗ and Function ✗. The reason for Case 3

error is because two channels may have very similar functionalities

and the description does not specify specifically either the channel

names or the functionalities. For trigger, the number of such cases

on Rob2Rand and LAM is 111 and 118 cases respectively out of 769

total samples. For action, Rob2Rand and LAM results 136 and 152

cases respectively out of 769 total samples. The example of Case 3

error is shown in Figure 8.

Send me a new mobile notification for #ttc service advisories

Ground Truth

Action channel : Pushover

Action function : Pushover.Send_a_notification

Prediction

Action channel : IF_Notifications

Action function : IF_Notifications.Send_a_notification

Figure 8: Case 3 error; both the action channel and action
function are incorrect. Both IF Notification and Pushover are
channels for sending push-notifications to smartphones.

Overall, Rob2Rand has fewer errors than LAM in all error cases.

Hence, our error analysis indicates that sequence learning is more

suitable than the prior state-of-the-art which frames the problem

as a classification task.

6.1.2 Field-level. Both Code2Rand and Rob2Rand performs com-

petitively as shown in Table 6. An example of a correct prediction is

shown in Figure 9. We can observe that RecipeGen can successfully

Sync "+diy projects/harry potter" ios album photos to evernote note-

book "+diy projects/harry potter

Prediction

Trigger function : iOS_Photos.New_photo_added_to_album

Trigger fields : (Album name)

Action function : Evernote.Create_image_note_from_URL

Action fields : (Title, Image URL, Notebook, Tags)

Figure 9: A correct prediction in the field-level generation.
This prediction is challenging because the function uses mul-
tiple field names.

generate both the trigger and action functions and identify their

field names.

Figure 10 shows the example of the failed predictions in the field-

level. Interestingly, the prediction is incorrect due to the unclear

description instead of incorrectly predicting the trigger fields. Such

an example illustrates that generating TAP with varying lengths is

possible. One of the limitations of LAM is it assumes that the target

sequence length is fixed. Therefore, the sequence is predicted using

a set of fixed classifiers. Such a fact makes LAM does not scale if the

target TAP is varying in length. In contrast, RecipeGen leverages

sequence learning where the architecture of the model does not

depend on the target sequence length. Consequently, RecipeGen is

more scalable and can be easily extended to generate longer TAP

sequences with varying length.

If nest cam detects motion, turn on a skylinknet lamp

Ground Truth

Trigger function : Nest_Cam.New_motion_event

Trigger fields : (Which device?)

Action function : SkylinkNet.Turn_device_ON

Action fields : ()

Prediction

Trigger function : Nest_Cam.New_sound_or_motion_event

Trigger fields : (Which device?)

Action function : SkylinkNet.Turn_device_ON

Action fields : ()

Figure 10: A failed prediction in the field-level generation.
The trigger field is correct. However, the trigger function is
incorrect as the intended functionality is to detect motion
"only" but the predicted trigger functionality is detect "mo-
tion and sound".

6.2 Future Direction
There are a number of possible extensions of our work. The first

extension is generating field values. Generating field values can

be challenging as the description may not contain the necessary

information to fill in the field values and the training data is too

sparse to provide useful values. A possible solution is by framing

the problem as a sequence completion problem and training an ad-

ditional model using external knowledge source to fill in the values.

Although it may not generate the actual intended values, the user

still can use the generated field values as a suggestion. The second

extension is proposing a technique to improve the adaptation of

existing off-the-shelf pre-trained models. Our results indicate that

leveraging a domain-specific pre-trained model (i.e., CodeBERT),

ICPC ’22, May 16–17, 2022, Virtual Event, USA Imam Nur Bani Yusuf, Jiang Lingxiao, David Lo

does not yield significant performance difference compared to a

general pre-trained model (i.e., RoBERTa). Such a fact suggests that

there are opportunities to improve such adaptations using more

sophisticated learning techniques.

6.3 Threats to Validity
Even though our idea may be generalizable to different TAP do-

mains, there are still possible threats to external validity of our

study and experiments. For example, we used the same dataset as

the prior work in the TAP generation task [13, 15, 14], it does not

cover all latest IFTTT data and it only contains TAPs with one

trigger-action pair. For semantic correctness, we did not specifi-

cally validate whether the generated trigger/action components are

valid. In real deployments, we envision that this issue can be re-

solved by validating each generated component against additional

context information (e.g., the actual devices or services in users’

environments) when performing beam search to discard invalid

names from its generation candidates. There may also be threats to

internal validity in the experiments and implementation that we

may have made unintended bugs. We have released the replication

package for others to check. Lastly, the ground truth and metrics

that we use to evaluate our approach may not be suitable, inducing

threats to construct validity. We also plan to devise new methods

to improve the dataset and its ground truth as there could be more

kinds of TAPs available and there could be more than one correct

answer for each input description.

7 RELATEDWORK
TAP has been scrutinized in various aspects, such as security [2,

37], privacy [38, 39, 40] testing [41], debugging [42], infrastructure

deployment [43], and empirical study [44, 12, 10]. In this section,

we discuss more thoroughly prior works that are closely related

with our study, i.e., TAP generation and recommendation.

One-Shot Generation. Some approaches have been proposed to

generate recipes automatically in one shot. Quirk et al. [13] framed

the problem as a classification task and use logistic regression to

generate recipes automatically. The authors treated the target recipe

as a set of productions. They trained a binary classifier for each

production by leveraging linguistic features from the source de-

scription (i.e., word unigrams and bigrams, and character trigrams)

to decide whether production should appear in the output. How-

ever, this approach is not scalable because each production requires

a different classifier. In contrast, the productions may grow because

new channels appear or existing channels release new functions.

Beltalgy et al. [15] improved the prior approach by framing the

problem as a structure prediction. Each modeling decision predicts

one small component of the target structure, conditioned on the

input and prior outputs. The authors built an ensemble of a logistic

regression classifier and a Multi-Layer Perceptron (MLP). Although

it can outperform the prior approach from Quirk et al. [13], the

authors still ignore the source description’s semantic because they

treated the source features as bag-of-words.

The current state-of-the-art on one-shot recipe generation is

Latent Attention Model (LAM) [14]. Similar to [13], the authors

trained multi-class classifiers to predict the trigger and action in-

stead of using a binary classifier. Moreover, the authors developed a

new attention mechanism called latent attention. After computing,

the standard attention [45, 46], LAM weights the attention using

the latent weight of each token in the sentence. However, LAM

ignores the relationship between trigger and action because the

predictions are made disjointedly.

Interactive Generation. Huang et al. [47] introduced a frame-

work called InstructableCrowd that allows users to compose applets

by having a conversation with crowd-workers via a smartphone

app. Chaurasia et al. [48] automate the prior approach from Huang

et. al. [47] by replacing human crowd-workers with a conversa-

tional agent and casting the problem as a slot-filling task. Recently,

Yao et al. [49] improved the conversational agent by leveraging

hierarchical reinforcement learning to let the agent learn while

interacting with users. However, such an approach is costly be-

cause the agent needs to interact with users in the training phase.

Although simulation of human interaction can be an alternative,

designing such a thing is a challenging task. Corno et. al. [50] also

developed a conversational agent called HeyTap. HeyTAP lever-

ages users’ usages information and their specified profiles to make

recommendations instead of only utilizing users’ intentions as in

the prior works [49, 48, 47].

TAP Recommendation. Corno et. al. introduced a tool that

can give TAP recommendations to the users called RecRules [51].

RecRules represents channels and functions as semantic graph

representation using manually crafted rules, given users’ usage

history. Subsequently, RecRules performs semantic reasoning using

third-party software followed by collaborative filtering mapping.

RecipeGen and RecRules is different because RecRules requires 1)

TAP usages information of other users, and 2) mapping of channels

and functions to the semantic graph representation. In contrast,

RecipeGen only requires natural language description to make

recommendations. Further, Corno et. al. then proposed an end-to-

end framework based on RecRules called TapRec [11].

8 CONCLUSION
We have proposed RecipeGen to address the Trigger-Action Pro-

gram (TAP) generation problem. RecipeGen formulate the problem

as a sequence-to-sequence problem and leverages Transformer

seq2seq architecture to translate an input description into a se-

quence of triggers and actions in the fine-grained field-level. We

have evaluated RecipeGen on real-world datasets curated from

the IFTTT platform against the prior state-of-the-art classification-

based approach for TAP generation. Firstly, our results show that

the seq2seq problem formulation generates more accurate TAPs

containing channels and functions than the classification-based

approach and can generate fine-grained fields that the prior ap-

proach cannot. Secondly, leveraging an autoencoding pre-trained

model to warm-start the encoder improves the performance fur-

ther. Thirdly, our results also indicate that a domain-specific and

a general pre-trained models do not yield significant difference in

terms of performance improvement.

Acknowledgments. This research is supported by the Ministry

of Education, Singapore, under its Academic Research Fund Tier

2 (Award No.: MOE2019-T2-1-193). Any opinions, findings and

conclusions or recommendations expressed in this material are

those of the author(s) and do not reflect the views of the Ministry

of Education, Singapore.

Accurate Generation of TAPs with Domain-Adapted Sequence-to-Sequence Learning ICPC ’22, May 16–17, 2022, Virtual Event, USA

REFERENCES
[1] Sam S. Adams. 2008. The future of end user programming? In 30th International

Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18,
2008, Companion Volume. Wilhelm Schäfer, Matthew B. Dwyer, and Volker

Gruhn, editors. ACM, 887–888. doi: 10.1145/1370175.1370177. https://doi.org/

10.1145/1370175.1370177.

[2] Lefan Zhang, Weijia He, Jesse Martinez, Noah Brackenbury, Shan Lu, and

Blase Ur. 2019. Autotap: synthesizing and repairing trigger-action programs

using ltl properties. In 2019 IEEE/ACM 41st international conference on software
engineering (ICSE). IEEE, 281–291.

[3] IFTTT. [n. d.] IFTTT helps every thing work better together. https://ifttt.com/.

(Accessed on 08/29/2021). ().

[4] Olisto. [n. d.] Smart Connected Experiences - Olisto Brands. (Accessed on

08/03/2021).

[5] Integromat. [n. d.] Integromat - achieve more in less time with fewer people.

(Accessed on 08/03/2021).

[6] Zapier. [n. d.] Zapier | The easiest way to automate your work. (Accessed on

08/03/2021).

[7] Microsoft Power Automate. [n. d.] Power automate | microsoft power platform.

(Accessed on 08/03/2021).

[8] Home Assistant. [n. d.] Home Assistant. (Accessed on 08/03/2021).

[9] OpenHAB. [n. d.] OpenHAB. (Accessed on 08/03/2021).

[10] Xianghang Mi, Feng Qian, Ying Zhang, and XiaoFeng Wang. 2017. An empiri-

cal characterization of ifttt: ecosystem, usage, and performance. In Proceedings
of the 2017 Internet Measurement Conference, 398–404.

[11] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2020. Taprec:

supporting the composition of trigger-action rules through dynamic recom-

mendations. In Proceedings of the 25th International Conference on Intelligent
User Interfaces, 579–588.

[12] Blase Ur,Melwyn Pak YongHo, Stephen Brawner, Jiyun Lee, SarahMennicken,

Noah Picard, Diane Schulze, and Michael L Littman. 2016. Trigger-action

programming in the wild: an analysis of 200,000 ifttt recipes. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems, 3227–3231.

[13] Chris Quirk, Raymond Mooney, and Michel Galley. 2015. Language to code:

learning semantic parsers for if-this-then-that recipes. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), 878–888.

[14] Chang Liu, Xinyun Chen, Eui Chul Shin, Mingcheng Chen, and Dawn Song.

2016. Latent attention for if-then program synthesis. Advances in Neural
Information Processing Systems, 29, 4574–4582.

[15] Islam Beltagy and Chris Quirk. 2016. Improved semantic parsers for if-then

statements. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 726–736.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in neural information processing systems, 5998–6008.
[17] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2019. Eudopti-

mizer: assisting end users in composing if-then rules through optimization.

IEEE Access, 7, 37950–37960. doi: 10.1109/ACCESS.2019.2905619.
[18] Andrew M Dai and Quoc V Le. 2015. Semi-supervised sequence learning.

Advances in neural information processing systems, 28, 3079–3087.
[19] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher

Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word

representations. arXiv preprint arXiv:1802.05365.
[20] Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-

tuning for text classification. arXiv preprint arXiv:1801.06146.
[21] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou,Wei Li, and Peter J Liu. 2019. Exploring the limits

of transfer learning with a unified text-to-text transformer. arXiv preprint
arXiv:1910.10683.

[22] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming

Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: a

pre-trained model for programming and natural languages. arXiv preprint
arXiv:2002.08155.

[23] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya

Sutskever, et al. 2019. Language models are unsupervised multitask learners.

OpenAI blog, 1, 8, 9.
[24] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. Codet5:

identifier-aware unified pre-trained encoder-decoder models for code under-

standing and generation. arXiv preprint arXiv:2109.00859.
[25] Clara Meister, Ryan Cotterell, and Tim Vieira. 2020. If beam search is the

answer, what was the question? In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Association for

Computational Linguistics, Online, (November 2020), 2173–2185. doi: 10 .

18653/v1/2020.emnlp-main.170. https : / /aclanthology.org/2020.emnlp-

main.170.

[26] Xin Zhou, DongGyun Han, and David Lo. 2021. Assessing generalizability

of codebert. In IEEE International Conference on Software Maintenance and
Evolution, ICSME 2021, Luxembourg, September 27 - October 1, 2021. IEEE,
425–436. doi: 10.1109/ICSME52107.2021.00044. https://doi.org/10.1109/

ICSME52107.2021.00044.

[27] Ehsan Mashhadi and Hadi Hemmati. 2021. Applying codebert for automated

program repair of java simple bugs. In 18th IEEE/ACM International Conference
on Mining Software Repositories, MSR 2021, Madrid, Spain, May 17-19, 2021.
IEEE, 505–509. doi: 10.1109/MSR52588.2021.00063. https://doi.org/10.1109/

MSR52588.2021.00063.

[28] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer,

and Omer Levy. 2020. Spanbert: improving pre-training by representing and

predicting spans. Transactions of the Association for Computational Linguistics,
8, 64–77.

[29] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In

2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE).
IEEE, 933–944.

[30] Jing Kai Siow, Cuiyun Gao, Lingling Fan, Sen Chen, and Yang Liu. 2020. Core:

automating review recommendation for code changes. In 2020 IEEE 27th
International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 284–295.

[31] Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang, Dongmei Zhang, and

Jianjun Zhao. 2015. Codehow: effective code search based on api understand-

ing and extended boolean model (e). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 260–270.

[32] Xin Ye, Razvan Bunescu, and Chang Liu. 2014. Learning to rank relevant files

for bug reports using domain knowledge. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
689–699.

[33] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a

method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics, 311–318.

[34] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016.

Deep api learning. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 631–642.

[35] Zeyu Sun, Qihao Zhu, Lili Mou, Yingfei Xiong, Ge Li, and Lu Zhang. 2019. A

grammar-based structural cnn decoder for code generation. In Proceedings of
the AAAI conference on artificial intelligence number 01. Volume 33, 7055–7062.

[36] Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang.

2020. Treegen: a tree-based transformer architecture for code generation.

In Proceedings of the AAAI Conference on Artificial Intelligence number 05.

Volume 34, 8984–8991.

[37] Sunil Manandhar, Kevin Moran, Kaushal Kafle, Ruhao Tang, Denys Poshy-

vanyk, and Adwait Nadkarni. 2020. Towards a natural perspective of smart

homes for practical security and safety analyses. In 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 482–499.

[38] Milijana Surbatovich, Jassim Aljuraidan, Lujo Bauer, Anupam Das, and Limin

Jia. 2017. Some recipes can do more than spoil your appetite: analyzing the se-

curity and privacy risks of ifttt recipes. In Proceedings of the 26th International
Conference on World Wide Web, 1501–1510.

[39] Rixin Xu, Qiang Zeng, Liehuang Zhu, Haotian Chi, Xiaojiang Du, and Mohsen

Guizani. 2019. Privacy leakage in smart homes and its mitigation: ifttt as a

case study. IEEE Access, 7, 63457–63471.
[40] Camille Cobb, Milijana Surbatovich, Anna Kawakami, Mahmood Sharif, Lujo

Bauer, Anupam Das, and Limin Jia. 2020. How risky are real users’ IFTTT

applets? In Sixteenth Symposium on Usable Privacy and Security (SOUPS) 2020),
505–529.

[41] Kulani Mahadewa, Yanjun Zhang, Guangdong Bai, Lei Bu, Zhiqiang Zuo,

Dileepa Fernando, Zhenkai Liang, and Jin Song Dong. 2021. Identifying pri-

vacy weaknesses from multi-party trigger-action integration platforms. In

Proceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2–15.

[42] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2019. Empow-

ering end users in debugging trigger-action rules. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems, 1–13.

[43] Lei Liu, Mehdi Bahrami, and Wei-Peng Chen. 2020. Automatic generation of

ifttt mashup infrastructures. In 2020 35th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 1179–1183.

[44] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L Littman. 2014.

Practical trigger-action programming in the smart home. In Proceedings of
the SIGCHI conference on human factors in computing systems, 803–812.

[45] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. 2015. English (US).

In 3rd International Conference on Learning Representations, ICLR 2015 ;

Conference date: 07-05-2015 Through 09-05-2015. (January 2015).

[46] Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective ap-

proaches to attention-based neural machine translation. In Proceedings of the

https://doi.org/10.1145/1370175.1370177
https://doi.org/10.1145/1370175.1370177
https://doi.org/10.1145/1370175.1370177
https://ifttt.com/
https://doi.org/10.1109/ACCESS.2019.2905619
https://doi.org/10.18653/v1/2020.emnlp-main.170
https://doi.org/10.18653/v1/2020.emnlp-main.170
https://aclanthology.org/2020.emnlp-main.170
https://aclanthology.org/2020.emnlp-main.170
https://doi.org/10.1109/ICSME52107.2021.00044
https://doi.org/10.1109/ICSME52107.2021.00044
https://doi.org/10.1109/ICSME52107.2021.00044
https://doi.org/10.1109/MSR52588.2021.00063
https://doi.org/10.1109/MSR52588.2021.00063
https://doi.org/10.1109/MSR52588.2021.00063

ICPC ’22, May 16–17, 2022, Virtual Event, USA Imam Nur Bani Yusuf, Jiang Lingxiao, David Lo

2015 Conference on Empirical Methods in Natural Language Processing. Asso-
ciation for Computational Linguistics, Lisbon, Portugal, (September 2015),

1412–1421. doi: 10.18653/v1/D15-1166. https://aclanthology.org/D15-1166.

[47] Ting-Hao Kenneth Huang, Amos Azaria, and Jeffrey P Bigham. 2016. In-

structablecrowd: creating if-then rules via conversations with the crowd. In

Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors
in Computing Systems, 1555–1562.

[48] Shobhit Chaurasia and Raymond Mooney. 2017. Dialog for language to code.

In Proceedings of the Eighth International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), 175–180.

[49] Ziyu Yao, Xiujun Li, Jianfeng Gao, Brian Sadler, and Huan Sun. 2019. Inter-

active semantic parsing for if-then recipes via hierarchical reinforcement

learning. In Proceedings of the AAAI Conference on Artificial Intelligence num-

ber 01. Volume 33, 2547–2554.

[50] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2021. From

users’ intentions to if-then rules in the internet of things. ACM Transactions
on Information Systems (TOIS), 39, 4, 1–33.

[51] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2019. Recrules:

recommending if-then rules for end-user development. ACM Transactions on
Intelligent Systems and Technology (TIST), 10, 5, 1–27.

https://doi.org/10.18653/v1/D15-1166
https://aclanthology.org/D15-1166

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Trigger Action Program (TAP)
	2.2 Transformer-Based Language Model

	3 Approach
	3.1 Problem Formulation
	3.2 RecipeGen

	4 Evaluation
	4.1 Dataset
	4.2 Experimental Setting
	4.3 Metrics

	5 Empirical Results
	5.1 How does the Transformer seq2seq-based models perform on TAP generation task?
	5.2 Does leveraging CodeBERT yield better performance improvement than RoBERTa?

	6 Discussion
	6.1 Error Analysis
	6.2 Future Direction
	6.3 Threats to Validity

	7 Related Work
	8 Conclusion

