
Towards Automated Embedded Systems Programming

Imam Nur Bani Yusuf
School of Computing and Information System

Singapore Management University
imamy.2020@phdcs.smu.edu.sg

Abstract—Writing code for embedded systems poses unique
challenges due to hardware involvement. Developers often need
to learn domain-specific knowledge to write embedded codes.
Learning such knowledge is time-consuming and hinders de-
velopers’ productivity. This paper presents a proposal for an
automated code generation approach, specifically designed for
embedded systems. The work is composed of three milestones, i.e.,
understanding the needs of embedded developers by analyzing
posts from discussion forums, developing a tool to recommend
driver libraries of I/O hardware and generate its interface
configurations and usage patterns, and improving the generation
accuracy of the prior tool using program analysis techniques.
The tool will be evaluated using various metrics from machine
translation, classification, and information retrieval fields.

Index Terms—code generation, library recommendation, em-
bedded system, hardware configuration

I. MOTIVATION AND RESEARCH PROBLEM

An embedded system is a system that integrates software
and hardware to achieve a specific task. An embedded sys-
tem can be decomposed into the code, I/O (Input/Output)
hardware, and embedded controller. The code contains the
logic that represents the functionality, such as reading sensor
values or moving actuators. The controller controls a set of
I/O hardware to interact with the environment, based on the
logic of the code. There are various embedded system use
cases, ranging from mission-critical (e.g., autonomous car) to
massive applications (e.g., smart home).

Writing code for embedded systems poses unique chal-
lenges due to hardware involvement [1]–[3]. Makhshari and
Mesbah [1] find that writing codes for embedded systems
often require diverse background knowledge besides coding.
Consider the example in Fig. 1. A simple action to move
the servo using the write method requires the developer
to know how to correctly configure interfaces/pin numbers
when calling the attach method. The developer may not be
familiar with such domain-specific knowledge [3]. Learning
such domain-specific knowledge is possible, but it can hinder
the productivity of a developer. One potential solution to low-
ering the learning curve of such domain-specific knowledge
is to develop an automated code generation tool based on
deep learning techniques. Recent studies on automated code
generation have shown that deep learning-based approaches
can yield promising results [4]. There are a variety of input
specifications that have been used, such as natural language
descriptions, codes, or even pixels [5], [6].

Based on the literature study, I identify two research gaps.
First, the programming needs of developers when writing

Servo myServo ;
myServo . a t t a c h (p i n = 1 0) ;
myServo . w r i t e (1 0)
myServo . d e t a c h ()

Fig. 1. An example of how the setup in the physical and code spaces should
match. The servo should be connected to the interface number 10 in the
physical space and the Servo object must be initialized using pin number 10
in the code space.

embedded codes are still unclear. No prior studies have scruti-
nized how embedded codes are written and how I/O hardware
is controlled in the code. Second, as a consequence of the
first gap, there is no tool available to help developers write
embedded codes. Hence, the research questions of this study
are: 1) to understand the programming needs of developers
when writing embedded codes and 2) to develop a tool that can
help developers easily write embedded codes without worrying
about the required domain-specific knowledge.

II. EXPECTED CONTRIBUTIONS

The main objective of my study is to understand the
common needs of embedded developers and propose a tool to
help developers write embedded codes based on such needs.
I divide my work into three milestones.

1) Scrutinizing the common needs of developers when writ-
ing embedded codes. The output of the first milestone is
several insights into the developers’ needs when writing
embedded codes. Such insights will be used to justify the
design of the proposed tool for the subsequent milestone.

2) Exploring the possibility of automatically generating
embedded codes using natural language descriptions that
satisfy the common needs of embedded developers. The
output of the second milestone is a deep learning-based
tool that produces hardware interface configurations and
API usage patterns (without parameters) of individual
I/O hardware.

3) Improving the tool proposed in the second milestone to
generate complete embedded codes, not only the inter-
face configurations and API usage patterns of individual
I/O hardware. The output of the third milestone is a deep
learning-based tool that generates complete embedded
codes.

III. RELATED WORKS

Several empirical studies [1]–[3] related to developing em-
bedded systems have been conducted. Makhshari and Mes-
bah [1] found that hardware-specific knowledge causes em-
bedded development in the Internet of Things (IoT) setting
difficult. According to Uddin et al. [2], microcontroller
configuration is one of the three most frequently discussed
IoT-related topics in StackOverflow. Booth et al. [3] conducted
a user study and shows that 80% of circuit-related problems
are caused by miswiring and missing electronic components.

Some works have been proposed to recommend relevant
library usage patterns [7]–[15] given a natural language query.
However, generating only library usage patterns is insufficient
because developers also need to configure I/O hardware.
Another line of works is to develop a tool to allow developers
to configure interfaces using a specialized hardware [16]–
[18]. However, the specialized hardware may not be available
for everyone. Moreover, a block-based programming [19]
approach and interactive tutorials [20]–[23] have been devel-
oped. However, such approaches are not scalable because they
require hand-crafted templates.

IV. PROPOSED APPROACH

I describe the possible approaches for achieving each mile-
stone as follows.

Common needs of developers. I plan to gather and an-
alyze developers’ questions from various embedded system
discussion forums. Some examples of the forums are Arduino
Discussion Forum [24] and Raspberry Pi Forum [25]. First, the
questions are crawled using several criteria, such as whether
the questions contain solutions, codes, or several predefined
keywords. Defining the criteria may require domain-specific
knowledge. Second, the questions are clustered using topic
modeling techniques to get a high-level summary of the
questions. Third, some questions from each topic are sampled
and each sampled question is manually inspected to extract
the insights.

Recommending interface configurations and API usage
patterns. I plan to develop a tool on top of existing large
language models to generate hardware configurations and
API usage patterns given natural language descriptions. First,
the tool identifies I/O hardware in the description. Second,
the tool recommends relevant driver libraries for each I/O
hardware. Third, the tool generates the interface configurations
and API usage patterns of each recommended library. Three
aspects need to be carefully designed when developing a tool
that utilizes deep learning: the neural network architecture,
the input and output representation, and the transfer learn-
ing mechanism. Transformer [26] is a strong architecture

candidate because prior studies [4], [14], [15], [27] have
demonstrated that Transformer can achieve state-of-the-art
performance on various coding tasks. Some candidates for the
input representation are the question title, question body, and
code in the question. The outputs of the model are the interface
configurations and the API usage patterns (without parameters)
from the driver libraries. With the rise of language models with
huge parameters such as BLOOM [28], one suitable candidate
for the transfer learning mechanism is prompt-tuning.

Generating complete embedded codes. I plan to improve
the proposed tool in the second milestone by combining the
tool with program analysis techniques. Specifically, the goal
of the third milestone is to arrange the generated recom-
mendations into a complete embedded code using program
analysis techniques. However, there are two challenges. The
first challenge is generating the correct API parameters can be
difficult due to the diversity of the parameters; API parameters
can be an arbitrary value specified by a developer. I plan to use
domain-specific heuristics and pattern mining techniques to
tackle the parameter diversity challenge. The second challenge
is writing the functional logic of the complete code (e.g.,
if the temperature is more than x then do y) may not be
straightforward, especially if the input description involves
multiple hardware. One idea is to study the control flow
between multiple hardware in codes and use heuristics or
develop some techniques to generate the functional logic to
form the complete code.

V. FUTURE PLANS

Evaluation plan. To evaluate the quality of the recom-
mended library, I plan to use classification metrics (e.g.,
precision, recall, and F1) and also retrieval metrics (e.g.,
Normalized Discounted Cumulative Gain or NDCG [29]). For
evaluating the code generation performance, I plan to leverage
several machine translation metrics, such as BLEU [30],
METEOR [31], and ROUGE [32] scores. BLEU score is the
hits of n-grams of translation results with its ground truths.
ROUGE score reflects the number of n-grams in the ground
truths that appear in the results. METEOR measures the
relevancy based on the harmonic mean of unigram precision
and recall.

Completion timeline. For milestone (1), the expected com-
pletion time is five months. I am still in the phase of collecting
forum posts from Arduino Discussion Forum [24]. The next
steps after the data collection are data cleaning, data labeling,
and data analysis. Data cleaning may require one month, while
data labeling may require three months. Another month is for
data analysis. On the other hand, I plan to finish milestone (2)
in three months because I have started the initial development
of the tool. For milestone (3), I plan to finish in six months.
My expected graduation time is by the end of next year, and
there are still a few months after I finish milestone (3) until
the end of the year. The remaining time will be used for any
possible iterations due to resubmissions.

REFERENCES

[1] A. Makhshari and A. Mesbah, “Iot bugs and develop-
ment challenges,” in International Conference on Software
Engineering. IEEE, 2021, pp. 460–472. [Online]. Available:
https://doi.org/10.1109/ICSE43902.2021.00051

[2] G. Uddin, F. Sabir, Y. Guéhéneuc, O. Alam, and F. Khomh, “An
empirical study of iot topics in iot developer discussions on stack
overflow,” Empir. Softw. Eng., vol. 26, no. 6, p. 121, 2021. [Online].
Available: https://doi.org/10.1007/s10664-021-10021-5

[3] T. Booth, S. Stumpf, J. Bird, and S. Jones, “Crossed wires:
Investigating the problems of end-user developers in a physical
computing task,” in Conference on Human Factors in Computing
Systems. ACM, 2016, pp. 3485–3497. [Online]. Available:
https://doi.org/10.1145/2858036.2858533

[4] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong,
L. Shou, B. Qin, T. Liu, D. Jiang, and M. Zhou, “Codebert:
A pre-trained model for programming and natural languages,” in
EMNLP, ser. Findings of ACL, vol. EMNLP 2020. Association for
Computational Linguistics, 2020, pp. 1536–1547. [Online]. Available:
https://doi.org/10.18653/v1/2020.findings-emnlp.139

[5] T. Beltramelli, “pix2code: Generating code from a graphical user
interface screenshot,” in EICS. ACM, 2018, pp. 3:1–3:6. [Online].
Available: https://doi.org/10.1145/3220134.3220135

[6] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B.
Clement, D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou,
L. Zhou, M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan, S. K.
Deng, S. Fu, and S. Liu, “Codexglue: A machine learning benchmark
dataset for code understanding and generation,” in NeurIPS Datasets
and Benchmarks, 2021.

[7] L. Cai, H. Wang, Q. Huang, X. Xia, Z. Xing, and D. Lo, “BIKER:
a tool for bi-information source based API method recommendation,”
in European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 2019, pp. 1075–1079.
[Online]. Available: https://doi.org/10.1145/3338906.3341174

[8] M. M. Rahman, C. K. Roy, and D. Lo, “RACK: automatic
API recommendation using crowdsourced knowledge,” in IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering. IEEE Computer Society, 2016, pp. 349–359. [Online].
Available: https://doi.org/10.1109/SANER.2016.80

[9] Q. Huang, X. Xia, Z. Xing, D. Lo, and X. Wang, “API method
recommendation without worrying about the task-api knowledge gap,”
in Automated Software Engineering. ACM, 2018, pp. 293–304.
[Online]. Available: https://doi.org/10.1145/3238147.3238191

[10] W. Yuan, H. H. Nguyen, L. Jiang, Y. Chen, J. Zhao, and H. Yu, “API
recommendation for event-driven android application development,”
Inf. Softw. Technol., vol. 107, pp. 30–47, 2019. [Online]. Available:
https://doi.org/10.1016/j.infsof.2018.10.010

[11] W. Yuan, H. H. Nguyen, L. Jiang, and Y. Chen, “Libraryguru: API
recommendation for android developers,” in International Conference
on Software Engineering: Companion Proceeedings. ACM, 2018, pp.
364–365. [Online]. Available: https://doi.org/10.1145/3183440.3195011

[12] F. Thung, D. Lo, and J. Lawall, “Automated library
recommendation,” in Working Conference on Reverse Engineering.
IEEE Computer Society, 2013, pp. 182–191. [Online]. Available:
https://doi.org/10.1109/WCRE.2013.6671293

[13] F. Thung, S. Wang, D. Lo, and J. Lawall, “Automatic recommendation
of API methods from feature requests,” in Automated Software
Engineering. IEEE, 2013, pp. 290–300. [Online]. Available:
https://doi.org/10.1109/ASE.2013.6693088

[14] I. N. B. Yusuf, L. Jiang, and D. Lo, “Accurate generation
of trigger-action programs with domain-adapted sequence-to-
sequence learning,” in International Conference on Program
Comprehension. ACM, 2022, pp. 99–110. [Online]. Available:
https://doi.org/10.1145/3524610.3527922

[15] I. N. B. Yusuf, D. B. A. Jamal, L. Jiang, and D. Lo,
“Recipegen++: an automated trigger action programs generator,”
in European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, A. Roychoudhury, C. Cadar,
and M. Kim, Eds. ACM, 2022, pp. 1672–1676. [Online]. Available:
https://doi.org/10.1145/3540250.3558913

[16] W. Lee, R. Prasad, S. Je, Y. Kim, I. Oakley, D. Ashbrook, and
A. Bianchi, “Virtualwire: Supporting rapid prototyping with instant
reconfigurations of wires in breadboarded circuits,” in Tangible,

Embedded, and Embodied Interaction, 2021, pp. 4:1–4:12. [Online].
Available: https://doi.org/10.1145/3430524.3440623

[17] Y. Kim, H. Lee, R. Prasad, S. Je, Y. Choi, D. Ashbrook, I. Oakley, and
A. Bianchi, “Schemaboard: Supporting correct assembly of schematic
circuits using dynamic in-situ visualization,” in User Interface Software
and Technology. ACM, 2020, pp. 987–998. [Online]. Available:
https://doi.org/10.1145/3379337.3415887

[18] T. Wu, B. Wang, J. Lee, H. Shen, Y. Wu, Y. Chen, P. Ku, M. Hsu,
Y. Lin, and M. Y. Chen, “Circuitsense: Automatic sensing of physical
circuits and generation of virtual circuits to support software tools,” in
User Interface Software and Technology, 2017, pp. 311–319. [Online].
Available: https://doi.org/10.1145/3126594.3126634

[19] F. Anderson, T. Grossman, and G. W. Fitzmaurice, “Trigger-action-
circuits: Leveraging generative design to enable novices to design and
build circuitry,” in User Interface Software and Technology, 2017, pp.
331–342. [Online]. Available: https://doi.org/10.1145/3126594.3126637

[20] Y. Kim, Y. Choi, D. Kang, M. Lee, T. Nam, and A. Bianchi,
“Heyteddy: Conversational test-driven development for physical
computing,” Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., vol. 3, no. 4, pp. 139:1–139:21, 2019. [Online]. Available:
https://doi.org/10.1145/3369838

[21] J. Warner, B. Lafreniere, G. W. Fitzmaurice, and T. Grossman,
“Electrotutor: Test-driven physical computing tutorials,” in User
Interface Software and Technology. ACM, 2018, pp. 435–446.
[Online]. Available: https://doi.org/10.1145/3242587.3242591

[22] J. U. Davis, J. Gong, Y. Sun, P. K. Chilana, and X. Yang,
“Circuitstyle: A system for peripherally reinforcing best practices
in hardware computing,” in User Interface Software and
Technology. ACM, 2019, pp. 109–120. [Online]. Available:
https://doi.org/10.1145/3332165.3347920

[23] D. Drew, J. L. Newcomb, W. McGrath, F. Maksimovic, D. Mellis,
and B. Hartmann, “The toastboard: Ubiquitous instrumentation and
automated checking of breadboarded circuits,” in User Interface
Software and Technology. ACM, 2016, pp. 677–686. [Online].
Available: https://doi.org/10.1145/2984511.2984566

[24] “Arduino forum,” https://forum.arduino.cc/, (Accessed on 11/18/2022).
[25] “Raspberry pi forums,” https://forums.raspberrypi.com/, accessed: 2023-

03-18.
[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems, 2017, pp. 5998–6008.

[27] Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi, “Codet5:
Identifier-aware unified pre-trained encoder-decoder models for code
understanding and generation,” in Empirical Methods in Natural
Language Processing, 2021, pp. 8696–8708. [Online]. Available:
https://doi.org/10.18653/v1/2021.emnlp-main.685

[28] T. L. Scao, A. Fan, C. Akiki, E. Pavlick, S. Ilic, D. Hesslow, R. Castagné,
A. S. Luccioni, F. Yvon, M. Gallé, J. Tow, A. M. Rush, S. Biderman,
A. Webson, P. S. Ammanamanchi, T. Wang, B. Sagot, N. Muennighoff,
A. V. del Moral, O. Ruwase, R. Bawden, S. Bekman, A. McMillan-
Major, I. Beltagy, H. Nguyen, L. Saulnier, S. Tan, P. O. Suarez,
V. Sanh, H. Laurençon, Y. Jernite, J. Launay, M. Mitchell, C. Raffel,
A. Gokaslan, A. Simhi, and et al., “BLOOM: A 176b-parameter
open-access multilingual language model,” CoRR, vol. abs/2211.05100,
2022. [Online]. Available: https://doi.org/10.48550/arXiv.2211.05100

[29] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation of IR
techniques,” ACM Trans. Inf. Syst., vol. 20, no. 4, pp. 422–446, 2002.
[Online]. Available: http://doi.acm.org/10.1145/582415.582418

[30] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics. ACL,
2002, pp. 311–318. [Online]. Available: https://aclanthology.org/P02-
1040/

[31] S. Banerjee and A. Lavie, “METEOR: an automatic metric for
MT evaluation with improved correlation with human judgments,” in
Proceedings of the Workshop on Intrinsic and Extrinsic Evaluation
Measures for Machine Translation and/or Summarization@ACL.
Association for Computational Linguistics, 2005, pp. 65–72. [Online].
Available: https://aclanthology.org/W05-0909/

[32] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Text Summarization Branches Out. Barcelona, Spain: Association for
Computational Linguistics, Jul. 2004, pp. 74–81. [Online]. Available:
https://aclanthology.org/W04-1013

