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DUAL LEARNING OF CODE TRANSFORMATION PAT-
TERNS FROM DEMONSTRATIONS WITH GENERATION-
DISCRIMINATION OBJECTIVES

ABSTRACT

Large-scale software systems frequently require consistent code changes across
multiple locations to address security vulnerabilities, improve performance, or
add new features. While these changes share the same semantic intent, automat-
ing them is challenging due to syntactic variations in different code contexts. We
present a novel deep learning approach that learns code transformations from ex-
amples and generalizes them across diverse contexts while preserving the origi-
nal semantic intent. Our key contribution is a dual-learning adaptation technique
that optimizes two objectives during model fine-tuning: generating accurate code
transformations and discriminating between related and unrelated transformation
patterns. On real-world code transformation tasks from the Linux Kernel, our
approach achieves 20-21% higher Exact Match accuracy compared to standard
supervised fine-tuning across different model sizes and demonstrates a 35% im-
provement over the traditional pattern mining method. These results show that our
dual-learning strategy effectively can capture better transformation patterns from
the demonstrations than the baselines to generate correct transformations from the
input code.

1 INTRODUCTION

Software systems continuously evolve to address security vulnerabilities, enhance performance, fix
bugs, and implement new features ((Padioleau et al., 2006)). This evolution often involves changes
that must be consistently applied across multiple parts of the codebase. For instance, when an API is
updated or deprecated, developers need to modify all code locations that use the old API to maintain
consistency and prevent potential bugs (Lamothe et al. (2022); Li et al. (2013)).

In a large software system evolution, making repetitive code changes can pose significant challenges
due to syntactic variations in semantically equivalent code. Figure (1) demonstrates this through the
evolution of timer initialization in the Linux kernel. There are three changes (C1, C2, and C3) where
multiple initialization steps of the timer are simplified into a single function call. Each change trans-
forms initialization using init_timer, data assignment, and callback registration into a unified
setup_timer call. While these changes share identical semantic intent, they exhibit syntactical
variations in their implementation, such as varying variable names (e.g., bwi_timer in C1 ver-
sus se_active_timer in C2) and different callback functions (e.g., st21nfca_se_wt_timeout
in C1 versus sym53c8xx_timer in C3). These variations cause traditional patch-based automation
approaches ineffective. This migration spans nearly a decade: starting with 73 changes in 2008, con-
tinuing with sporadic updates and increased activities during 2014-2016 (43, 93, and 37 changes),
before concluding with a large-scale removal of 267 init_timer calls in 2017 (Serrano et al.
(2020)). This prolonged migration, spanning nearly a decade, serves as evidence of the inherent
difficulty in performing such an evolution.

The repetitive patterns in these changes, despite their syntactic variations, present an opportunity for
automation through deep learning. Deep learning models excel at recognizing underlying structures
while remaining robust to surface-level differences (Yin et al., 2018), making them well-suited for
automating code transformations that share semantic intent but vary in implementation.

In this work, we propose a deep learning-based approach to automate software evolution, where the
model infer transformation patterns from multiple change examples at inference time and generates
the transformed code for a given input. To further enhance the performance of deep learning in code
transformation, we propose a dual-learning adaptation technique that simultaneously optimizes two
objectives during fine-tuning: (1) a generation objective that predicts the next tokens for code trans-
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1 // C1
2 - init_timer(&info->se_info.bwi_timer);
3 - info->se_info.bwi_timer.data = (unsigned long)info;
4 - info->se_info.bwi_timer.function = st21nfca_se_wt_timeout;
5 + setup_timer(&info->se_info.bwi_timer, st21nfca_se_wt_timeout,
6 (unsigned long)info);
7
8 // C2
9 - init_timer(&info->se_info.se_active_timer);

10 - info->se_info.se_active_timer.data = (unsigned long)info;
11 - info->se_info.se_active_timer.function =

st21nfca_se_activation_timeout;
12 + setup_timer(&info->se_info.se_active_timer,

st21nfca_se_activation_timeout,
13 (unsigned long)info);
14
15 // C3
16 - init_timer(&np->s.timer);
17 - np->s.timer.data = (unsigned long)np;
18 - np->s.timer.function = sym53c8xx_timer;
19 + setup_timer(&np->s.timer, sym53c8xx_timer, (unsigned long)np);

Figure 1: Examples of timer initialization changes in the Linux kernel, showing the evolution from
multiple initialization steps to a single setup_timer call. These changes are semantically equiva-
lent, where the goal is to simplify the timer initialization.

formations, and (2) a relevance objective that learns to distinguish between related and unrelated
transformation patterns through discrimination learning. This dual objective enables the model to
both generate accurate transformations and recognize semantic relationships between different trans-
formation instances. Through this approach, our model can effectively adapt transformation patterns
from demonstrations to new inputs with different syntactic variations.

We evaluate our dual-learning adaptation technique on real-world code transformation tasks from the
Linux Kernel. The results demonstrate that our approach outperforms the standard supervised fine-
tuning by 20-21% in Exact Match accuracy across various model sizes. When compared to the state-
of-the-art pattern mining method for the Linux Kernel code transformation (Serrano et al., 2020), our
technique shows a substantial improvement of 35% in Exact Match, highlighting the effectiveness
of our dual-learning strategy to learn code transformation patterns from demonstrations and apply it
to the new input code. The replication package is available at https://anonymous.4open.
science/r/c-tuning/.

2 RELATED WORKS

Deep learning for code transformations. Deep learning models have demonstrated strong per-
formance across various software engineering tasks. Our work shares similarities with automated
program translation (Yang et al., 2024; Pan et al., 2024; Li et al., 2024; Liu et al., 2023), which
transforms programs between different programming languages while preserving semantics. While
program translation operates across languages, our work focuses on evolution-driven transforma-
tions within the same language. Our approach also relates to automated code repair (Zhang et al.,
2024; Fan et al., 2023; Hossain et al., 2024; Fu, 2023), where models learn to identify and fix buggy
code patterns. Both code repair and our work involve learning transformation patterns to maintain
system correctness, though we focus specifically on systematic evolution changes rather than indi-
vidual bug fixes. While the approach like Dilhara et al. (2024) focus on addressing limited change
examples in and Tufano et al. (2019) explore sequence-to-sequence models for code change automa-
tion, our work introduces a novel dual learning objective that better captures both the generation of
transformed code and the relevance between different transformation patterns.

Pattern-based code transformation. Several approaches have been proposed to learn code trans-
formations from examples. Early works like Sydit (Meng et al., 2011) and GENPAT (Jiang et al.,
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2019) focused on inferring transformations from single change examples, limiting their applicability
to complex evolution scenarios. LASE (Meng et al., 2013) advanced this by developing Abstract
Syntax Tree (AST) edit sequences from multiple examples, though it struggles with changes incor-
porating multiple variants. REFAZER (Rolim et al., 2017) introduced a domain-specific language
for transformation rules and employs clustering to handle variants, but like LASE, does not con-
sider control-flow dependencies. PyEvolve (Dilhara et al., 2023) employs graph-based matching
and specialized adaptation techniques but is specifically tailored for Python. Transformations in the
Linux kernel present unique challenges due to complex changes with identical semantics but diverse
syntax variants. Among pattern-based approaches, Spinfer (Serrano et al., 2020) demonstrates supe-
rior performance by considering both control-flow dependencies and multiple change variants when
deriving semantic patches for the Linux kernel. Given its effectiveness compared to other pattern-
based approaches, we use Spinfer as our baseline. In contrast to these pattern-based methods, our
approach leverages deep learning to naturally handle syntactic variations while capturing semantic
patterns, making it more adaptable across different contexts.

Dual Learning Framework. Prior works have explored dual learning frameworks to enhance
code generation tasks (Wei et al., 2019; Wang et al., 2024; Ye et al., 2020). These approaches pri-
marily focus on natural language to code generation tasks, using code summarization (code to natural
language) as an auxiliary objective. Our work differs fundamentally as we apply dual learning to
code transformation tasks, where we combine generative learning with a discrimination objective.
This novel combination enables our model to both generate accurate transformations and learn the
relationships between different transformation patterns, leading to better generation performance.
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) similarly leverage dual learn-
ing through generator and discriminator models to improve generation quality. However, unlike
GANs that rely on separate networks trained adversarially, our approach utilizes a single model that
jointly optimizes both generation and discrimination objectives. Furthermore, while GANs focus on
distribution matching between real and generated samples, our discrimination objective specifically
targets the semantic relationships between transformation patterns from code change examples.

3 METHODOLOGY

3.1 TASK DEFINITION

Given a set of demonstrations D = {(x1, y1), ..., (xk, yk)} where each pair consists of input code
xi and its transformed version yi, and a new input code xnew, the goal is to generate the target
transformed code ynew. Each demonstration pair captures the same underlying transformation pattern
that needs to be applied to xnew, as illustrated in Figure 1. Formally, we aim to model the conditional
probability in Equation 1,

p(ynew|xnew,D; θ) (1)

where θ represents the parameters of our neural model.

During training, we have a dataset of instances T = {(Di, x
i
new, y

i
new)}Ni=1 where each instance con-

tains a set of demonstrations, an input code, and its target transformation. The standard supervised
fine-tuning objective maximizes the log-likelihood as in Equation 2.

Lsup =

N∑
i=1

log p(yinew|xi
new,Di; θ) (2)

At inference time, given a new set of demonstrations Dtest and input code xtest, the model generates
the transformed code by Equation 3.

ytest = argmax
y

p(y|xtest,Dtest; θ) (3)

3
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3.2 FINE-TUNING WITH DUAL OBJECTIVES FOR CODE TRANSFORMATION LEARNING

To better capture the semantic relationships between code transformations, we propose a dual learn-
ing paradigm that combines generation and discrimination objectives. In the fine-tuning stage, one
training instance is a triplet of (Ta, Tp, Tn) where Ta serves as an anchor, Tp as a positive example
sharing the same transformation semantics as the anchor, and Tn as a negative example that have
different transformation semantics as Ta.

The total training objective consists of two components as shown in Equation 4

Ltotal = Lgen + λLdis (4)

The generation loss Lgen is the standard next-token prediction objective computed for all instances
in the triplet as shown by Equation 5.

Lgen =
∑

t∈{a,p,n}

log p(ytnew|xt
new,Dt; θ) (5)

The discrimination loss Ldis is a binary classification objective that encourages the model to distin-
guish between related and unrelated transformation patterns. To compute this loss, we first obtain
the representation of each instance (Ta, Tp, Tn) from the decoder’s final layer hidden states. Specif-
ically, we use the last token’s hidden state vector which can attend to all previous tokens in the
sequence. Let hlast

a , hlast
p , and hlast

n represent the last token’s hidden states for the anchor, positive,
and negative instances respectively. The discrimination loss is then computed as in the Equation 6,

Ldis = − log p(1|[hlast
a ;hlast

p ])− log p(0|[hlast
a ;hlast

n ]) (6)

where [; ] denotes vector concatenation. The model learns to assign high probability when two
instances share the same transformation semantics (anchor and positive) and low probability when
they have different semantics (anchor and negative). Through this discrimination objective, the
model develops the ability to recognize and distinguish different transformation patterns.

By utilizing all instances in the triplet for the generative loss Lgen, our approach maximizes the
learning signal from each training batch. This design allows the model to learn from multiple trans-
formation instances simultaneously while also learning to distinguish between semantically similar
and different transformations through Ldis. The dual learning paradigm thus enhances the model’s
ability to both generate accurate transformations and understand the underlying semantic relation-
ships between different transformation patterns.

4 EXPERIMENTAL SETTING

4.1 DATASET

Our dataset is derived from real-world C source code changes in the Linux kernel codebase, orig-
inally collected in Serrano et al. (2020). Each instance consists of a pair of C code snippets rep-
resenting the state before and after a change. These changes are organized into directories, where
each directory contains changes that share the same semantic intent while having different syntactic
forms, as illustrated in Figure 1. For each function in the code, we extract the modified lines before
and after the transformation, which become the input and target code respectively.

We construct training triplets of an anchor, a positive example, and a negative example
(Ta, Tp, Tn). Each T represents a transformation instance defined as: T = (D, x, y) Here,
D = {(x1, y1), ..., (xk, yk)} is a set of demonstrations, x is the input code to be transformed, and y
is its target transformation. For each transformation instance, we randomly sample up to Nd demon-
strations to create D. To ensure diversity in the training data, we perform Ns rounds of sampling for
each triplet. We set both Nd and Ns to 5, striking a balance between capturing sufficient variations
and maintaining computational feasibility as we fine-tune the model in our local machine. For the
testing set, we use directories outside those that are used to create the training triplets. The final
dataset contains 19,143 triplets for training and 632 instances for testing.

4
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Model Size Setting EM CodeBLEU BLEU METEOR ROUGE chrF

135M NTP 0.18 0.51 0.62 0.71 0.62 63.11

NTP + CLS (Ours) 0.39 0.62 0.75 0.82 0.74 76.95

360M NTP 0.58 0.72 0.84 0.87 0.84 87.03

NTP + CLS (Ours) 0.78 0.81 0.91 0.93 0.91 92.61

- Spinfer 0.43 0.44 0.50 0.51 0.50 51.17

Table 1: Performance comparison between our dual-learning framework and standard next token
prediction (NTP). All metrics show consistent improvements over the baseline NTP and Spinfer.

4.2 MODELS, BASELINES, AND METRICS

Models. We leverage SmolLM2 (Allal et al. (2025)) as our base model. We experiment with two
size variants: 135M1 and 360M2 parameters. We choose these models as these are one the latest
model that can still be fine-tuned in our local machine.

Baselines. We evaluate our dual-objective fine-tuning approach against several baselines:

• Next Token Prediction (NTP). The base model trained solely with the standard language
modeling objective (Equation 5). This baseline demonstrates the impact of incorporating
the discrimination loss in our approach.

• Spinfer. The current state-of-the-art approach for Linux Kernel code transformation (Ser-
rano et al. (2020)). Unlike our learning-based method, Spinfer employs clustering and
pattern mining techniques to analyze demonstrations and infer transformation rules.

• Contrastive Learning. We compare against two established contrastive learning ap-
proaches: InfoNCE (van den Oord et al. (2018)) and Triplet Loss (Schroff et al. (2015)).
Both methods learn semantic similarities between anchors, positive examples, and negative
examples in the embedding space. We also explore whether incorporating these contrastive
objectives into our method yields additional improvements.

Metrics. We employ multiple automated metrics that capture different aspects of code genera-
tion quality. We use Exact Match (EM) to measure perfect reproduction of the target code, and
CodeBLEU (Ren et al. (2020)) which specifically evaluates code similarity by considering syntac-
tic and semantic features. For general sequence similarity, we utilize smoothed BLEU-4 (Papineni
et al. (2002)), which measures precision by counting matching sequences between generated and
reference code, and METEOR (Banerjee & Lavie (2005)), which flexibly matches similar tokens
and considers word order, both widely adopted in generation tasks (Yusuf et al. (2023); Roy et al.
(2021)). We complement these with ROUGE@2 (Lin (2004)), which focuses on recall by checking
how much of the reference code is captured in the generation, and chrF (character n-gram order=6)
(Popovic (2015)) to capture character-level similarities, which is particularly relevant for code where
small differences can be significant.

5 RESULTS

5.1 COMPARISON WITH NEXT TOKEN PREDICTION OBJECTIVE

Table 1 presents the comparative evaluation of our dual-learning framework against the baseline
next token prediction (NTP) approach across two model sizes: 135M and 360M parameters. Our
approach (NTP + CLS) demonstrates consistent improvements across all metrics for both model
sizes. For the 135M model, adding the discrimination objective improves the exact match by 21%
(from 0.18 to 0.39) and achieves higher scores across all other metrics, with improvements ranging

1https://huggingface.co/HuggingFaceTB/SmolLM2-135M
2https://huggingface.co/HuggingFaceTB/SmolLM2-360M
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Model Size Setting EM CodeBLEU BLEU METEOR ROUGE chrF

135M

NTP + InfoNCE 0.18 0.52 0.62 0.72 0.62 63.00
NTP + Triplet 0.18 0.51 0.62 0.71 0.62 62.76

NTP + CLS + InfoNCE 0.38 0.62 0.74 0.81 0.73 76.30
NTP + CLS + Triplet 0.41 0.63 0.75 0.82 0.74 77.05

NTP + CLS (Ours) 0.39 0.62 0.75 0.82 0.74 76.95

360M

NTP + InfoNCE 0.57 0.72 0.83 0.86 0.83 86.09
NTP + Triplet 0.57 0.72 0.83 0.87 0.83 86.09

NTP + CLS + InfoNCE 0.77 0.81 0.91 0.93 0.91 92.72
NTP + CLS + Triplet 0.78 0.80 0.90 0.92 0.91 92.34

NTP + CLS (Ours) 0.78 0.81 0.91 0.93 0.91 92.61

Table 2: Performance comparison of our dual-learning framework (NTP + CLS) against contrastive
learning objectives (InfoNCE and Triplet Loss). Our approach consistently outperforms other meth-
ods across all metrics, demonstrating its effectiveness in enhancing model performance.

from 11-22%. The improvement of our approach is also similar with the 360M model, where we ob-
serve gains in exact match by 20% (from 0.58 to 0.78) and consistent improvements across all other
metrics, with gains ranging from 9-13% in the remaining metrics. These results demonstrate that
incorporating a discrimination objective alongside next token prediction leads to more robust and
accurate code transformation, with the benefits becoming more pronounced as model size increases.

5.2 COMPARISON WITH SPINFER

Our NTP + CLS approach with the 360M parameter model demonstrates substantial improvements
over the traditional pattern-mining Spinfer (Table 1). The 360M parameter model with NTP + CLS
achieves an exact match score of 0.78, indicating a 35% improvement over Spinfer (0.43). This
significant performance gap is consistent across all evaluation metrics: CodeBLEU (0.81 vs 0.44,
+37%), BLEU (0.91 vs 0.50, +41%), METEOR (0.93 vs 0.51, +42%), ROUGE (0.91 vs 0.50,
+41%), and chrF (92.61 vs 51.17, +41.44%). Notably, even our baseline NTP in the 360M model
substantially outperforms Spinfer, achieving a 15% higher exact match (0.58 vs 0.43) with consistent
improvements across all metrics.

Our 135M parameter model reveals interesting trade-offs in the context of code transformation.
When compared to Spinfer, our NTP + CLS model exhibits a distinct performance pattern: while
achieving a lower exact match score (0.39 vs 0.43), it consistently outperforms Spinfer across
similarity-based metrics, namely: CodeBLEU (0.62 vs 0.44), BLEU (0.75 vs 0.50), METEOR (0.82
vs 0.51), ROUGE (0.74 vs 0.50), and chrF (76.95 vs 51.17). This pattern can be attributed to the
fundamental differences in failure handling between the two approaches. Spinfer produces no output
when it fails to find a matching pattern, leading to lower scores in similarity-based metrics despite
maintaining a reasonable exact match. In contrast, our neural model always attempts to generate a
transformation. While these outputs may not exactly match the ground truth, they often capture par-
tial correctness, resulting in higher similarity scores. This behavior suggests that while our 135M
model demonstrates better generalization capabilities than Spinfer, it requires additional capacity
to consistently produce exact matches. These findings highlight the importance of model size in
achieving good performance across all metrics in the code transformation task.

5.3 COMPARING DISCRIMINATION AND CONTRASTIVE LEARNING OBJECTIVES

To better understand the role of discrimination objective in learning relationships between positive
and negative change examples, we conducted two sets of experiments. First, we examine whether
discrimination is more effective than alternative approaches by replacing the discrimination objec-
tive in our dual learning framework with two contrastive learning objectives: InfoNCE (van den
Oord et al. (2018)) and TripletLoss (Schroff et al. (2015)). Then, we investigate if combining these
objectives with discrimination could yield better performance. Both InfoNCE and TripletLoss are
designed to learn relationships between examples, but through different mechanisms. TripletLoss

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Paper under double-blind review

Model Size Setting EM CodeBLEU BLEU METEOR ROUGE chrF

135M
Mean Pooling 0.15 0.50 0.60 0.70 0.60 61.19

Max Pooling 0.08 0.42 0.49 0.58 0.49 53.06

Last Token 0.39 0.62 0.75 0.82 0.74 76.95

360M
Mean Pooling 0.59 0.72 0.84 0.87 0.83 86.39

Max Pooling 0.56 0.71 0.82 0.86 0.82 85.50

Last Token 0.78 0.81 0.91 0.93 0.91 92.61

Table 3: Performance comparison of mean pooling and max pooling versus last token representation
across different model sizes. The last token approach consistently outperforms mean pooling across
all evaluation metrics.

enforces a fixed margin between similarities, ensuring the distance between an input and its positive
example is smaller than the distance to the negative examples by at least a specified margin. In
contrast, InfoNCE learns through normalized similarity scores, maximizing the probability of iden-
tifying the positive example using a softmax over similarity scores between an anchor and all other
examples (both positive and negative).

Table 2 shows that both NTP + InfoNCE and NTP + Triplet Loss perform worse compared to our
NTP + CLS approach. For the 135M model, NTP + InfoNCE achieves an exact match of 0.18 and
NTP + Triplet achieves 0.18, while NTP + CLS reaches 0.39, showing a substantial improvement
of 21%. This performance gap is consistent across other metrics, with NTP + CLS outperforming
both contrastive learning variants by 10-13% in CodeBLEU, BLEU, METEOR, ROUGE, and chrF.
The gap widens further with the 360M model, where NTP + CLS achieves an exact match of 0.78,
outperforming NTP + InfoNCE (0.57) and NTP + Triplet (0.57) by 21%. Similar improvements
are observed across all metrics, with NTP + CLS showing 9-11% better performance. These re-
sults demonstrate that our discrimination-based approach is more effective than contrastive learning
objectives for this task.

Table 2 further shows that incorporating additional contrastive learning objectives (InfoNCE or
Triplet Loss) to our NTP + CLS framework yields slight improvements. For the 135M model, NTP
+ CLS + Triplet Loss achieves a higher exact match of 0.41 compared to 0.39 of NTP + CLS, while
NTP + CLS + InfoNCE achieves 0.38. Other metrics show similar patterns with both variants show-
ing 0-0.01 point improvements in BLEU (0.74-0.75 vs 0.75) and ROUGE (0.73-0.74 vs 0.74), and
about 0.1 point difference in chrF score. For the 360M model, both NTP + CLS + InfoNCE and NTP
+ CLS + Triplet achieve comparable exact match scores (0.77-0.78) to NTP + CLS (0.78). Other
metrics follow the same pattern with minimal differences across BLEU, METEOR, and ROUGE
scores, and less than 0.1 points in chrF score. These results suggest that while adding contrastive
objectives to NTP + CLS can provide marginal benefits, the discrimination objective alone achieves
strong performance.

5.4 IMPACT OF TOKEN REPRESENTATION STRATEGIES ON GENERATION PERFORMANCE

For the discrimination objective, we extract vector representations for comparing target pairs with
positive and negative examples. Our implementation utilizes the last token’s representation from the
final decoder layer, leveraging its ability to attend to all prior tokens in the sequence. To validate
this design choice, we conducted a comparative analysis between this approach and an alternative
that uses mean pooling and max pooling for aggregating representations. The subsequent steps
remain consistent across both variants: we concatenate the input pair’s representation with that
of the positive example and train the model to predict 1 for relevant pairs, while predicting 0 for
negative (irrelevant) pairs.

The results in Table 3 demonstrate that the last token approach consistently outperforms both mean
pooling and max pooling across all metrics. For the 135M model, using the last token representation
significantly improves the exact match from 15% to 39%, while max pooling performs notably worse
with only 8% exact match. This improvement pattern is consistent in the 360M model, where the
last token approach achieves 78% exact match compared to 59% with mean pooling and 56% with
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Figure 2: Performance comparison of different metrics across two model sizes (135M and 360M
parameters) with varying α values. For both models, (α = 0.5) generally yield better performance
across all metrics. All metrics are normalized to the range [0,1] for consistent comparison.

max pooling. The improvements extend beyond exact match, with the last token approach showing
relative gains of 12-15% across CodeBLEU, BLEU, METEOR, ROUGE, and chrF metrics for the
135M model, and 9-11% for the 360M model. These findings support our hypothesis that the last
token’s ability to attend to all prior tokens makes it a more effective representation strategy than both
mean pooling and max pooling approaches.

5.5 IMPACT OF DIFFERENT ALPHA VALUES ON GENERATION PERFORMANCE

The alpha value (α) controls the contribution of discrimination loss in our dual learning objective
(Equation 4), where higher values emphasize the model’s ability to distinguish between different
transformation patterns. To understand its impact better, we evaluated model performance across
multiple alpha values: {0.25, 0.5, 0.75, 1.0}.

The results in Figure 2 show that the alpha (α) parameter plays a key role in model performance.
Both models perform best with α=0.5, where the 135M model reaches 0.39 exact match score while
the 360M model achieves 0.78. We found that the 360M model’s performance drops notably when
alpha deviates from 0.5, falling to 0.70 at α=1.0. The same pattern holds across other metrics where
α=0.5 consistently yields the best results. The smaller 135M model follows a similar trend, where
the performance peaks at α=0.5 with a score of 0.39, and gradually declines to 0.35 when α=1.0,
though the variation is less pronounced compared to the 360M model. These results highlight an
important practical finding: careful tuning of alpha is crucial for both model sizes. Setting α=0.5
yields the best result in the code transformation task.

5.6 IMPACT OF TRAINING TRIPLET COUNT ON GENERATION PERFORMANCE

Understanding how our approach’s performance scales with training data is crucial for real-world
deployments, where data availability may vary. Figure 3 presents the relationship between the num-
ber of triplets seen during fine-tuning and exact match for two model architectures: 135M and 360M
parameters. We compare three model variants: NTP + CLS (Ours), NTP, and Spinfer (shown as a
red dashed line).

For the 135M model, increasing the number of training triplets leads to substantial improvements
in exact match for both NTP + CLS and NTP. Our approach consistently outperforms the NTP
baseline across all data regimes. With limited data (3,000 triplets), both approaches struggle to
learn meaningful patterns, achieving 0% exact match. However, as we increase the training data to
9,000 triplets, NTP + CLS shows a significant jump to 24% exact match, compared to NTP’s 11%.
This improvement continues with the full dataset (19,140 triplets), where NTP + CLS achieves 39%
exact match. However, this result still falling slightly short of Spinfer’s 43% baseline. While this
represents a significant improvement, it still falls short of Spinfer with 43% exact match, suggesting
that the limited capacity of the 135M model may be a bottleneck.
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Figure 3: Comparison of exact match accuracy between NTP + CLS and NTP across different
training data sizes. The exact match of NTP + CLS shows steady improvement with increasing data
until approximately 70% of the training data, after which the gains become more gradual.

For 360M model, NTP + CLS exhibits substantial gains as more triplets are seen during fine-tuning.
Starting from 13% exact match with 3,000 triplets, it rapidly improves to 73% with 9,000 triplets.
The improvement continues with the full dataset, reaching 78% exact match, though the rate of
gain starts to diminish after 9,000 triplets. This pattern suggests that while additional training data
beyond 9,000 triplets still contributes to performance improvements, the marginal benefits begin to
diminish. Interestingly, the baseline NTP demonstrates strong initial performance, achieving 56%
exact match even with limited data. However, the performance does not increase further after seeing
more data during fine-tuning. Both neural approaches (NTP + CLS and NTP) eventually outperform
Spinfer’s 43% baseline in this larger model setting. These results highlight the importance of model
capacity in effectively learning code transformation patterns from the training data.

6 CONCLUSION

In this work, we presented a deep learning-based approach for automating consistent code transfor-
mations in large-scale software systems. By leveraging a dual-learning adaptation technique, our
model simultaneously optimizes code generation and pattern discrimination, enabling it to gener-
alize transformations across diverse contexts while preserving semantic intent. Our evaluation on
real-world Linux Kernel transformation tasks demonstrated that our method outperforms standard
supervised fine-tuning by 20-21% in Exact Match accuracy and achieves a 35% improvement over
the traditional pattern mining technique. These results highlight the effectiveness of our approach in
capturing and applying transformation patterns from demonstrations.

Future work includes extending our framework to handle more complex transformations involving
structural code modifications, incorporating broader context, and exploring techniques to further
enhance model interpretability and trustworthiness for the resulting transformation code.
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