
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

DUAL LEARNING OF CODE TRANSFORMATION PAT-
TERNS FROM DEMONSTRATIONS WITH GENERATION-
DISCRIMINATION OBJECTIVES

ABSTRACT

Large-scale software systems frequently require consistent code changes across
multiple locations to address security vulnerabilities, improve performance, or
add new features. While these changes share the same semantic intent, automat-
ing them is challenging due to syntactic variations in different code contexts. We
present a novel deep learning approach that learns code transformations from ex-
amples and generalizes them across diverse contexts while preserving the origi-
nal semantic intent. Our key contribution is a dual-learning adaptation technique
that optimizes two objectives during model fine-tuning: generating accurate code
transformations and discriminating between related and unrelated transformation
patterns. On real-world code transformation tasks from the Linux Kernel, our
approach achieves 20-21% higher Exact Match accuracy compared to standard
supervised fine-tuning across different model sizes and demonstrates a 35% im-
provement over the traditional pattern mining method. These results show that our
dual-learning strategy effectively can capture better transformation patterns from
the demonstrations than the baselines to generate correct transformations from the
input code.

1 INTRODUCTION

Software systems continuously evolve to address security vulnerabilities, enhance performance, fix
bugs, and implement new features ((Padioleau et al., 2006)). This evolution often involves changes
that must be consistently applied across multiple parts of the codebase. For instance, when an API is
updated or deprecated, developers need to modify all code locations that use the old API to maintain
consistency and prevent potential bugs (Lamothe et al. (2022); Li et al. (2013)).

In a large software system evolution, making repetitive code changes can pose significant challenges
due to syntactic variations in semantically equivalent code. Figure (1) demonstrates this through the
evolution of timer initialization in the Linux kernel. There are three changes (C1, C2, and C3) where
multiple initialization steps of the timer are simplified into a single function call. Each change trans-
forms initialization using init_timer, data assignment, and callback registration into a unified
setup_timer call. While these changes share identical semantic intent, they exhibit syntactical
variations in their implementation, such as varying variable names (e.g., bwi_timer in C1 ver-
sus se_active_timer in C2) and different callback functions (e.g., st21nfca_se_wt_timeout
in C1 versus sym53c8xx_timer in C3). These variations cause traditional patch-based automation
approaches ineffective. This migration spans nearly a decade: starting with 73 changes in 2008, con-
tinuing with sporadic updates and increased activities during 2014-2016 (43, 93, and 37 changes),
before concluding with a large-scale removal of 267 init_timer calls in 2017 (Serrano et al.
(2020)). This prolonged migration, spanning nearly a decade, serves as evidence of the inherent
difficulty in performing such an evolution.

The repetitive patterns in these changes, despite their syntactic variations, present an opportunity for
automation through deep learning. Deep learning models excel at recognizing underlying structures
while remaining robust to surface-level differences (Yin et al., 2018), making them well-suited for
automating code transformations that share semantic intent but vary in implementation.

In this work, we propose a deep learning-based approach to automate software evolution, where the
model infer transformation patterns from multiple change examples at inference time and generates
the transformed code for a given input. To further enhance the performance of deep learning in code
transformation, we propose a dual-learning adaptation technique that simultaneously optimizes two
objectives during fine-tuning: (1) a generation objective that predicts the next tokens for code trans-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Paper under double-blind review

1 // C1
2 - init_timer(&info->se_info.bwi_timer);
3 - info->se_info.bwi_timer.data = (unsigned long)info;
4 - info->se_info.bwi_timer.function = st21nfca_se_wt_timeout;
5 + setup_timer(&info->se_info.bwi_timer, st21nfca_se_wt_timeout,
6 (unsigned long)info);
7
8 // C2
9 - init_timer(&info->se_info.se_active_timer);

10 - info->se_info.se_active_timer.data = (unsigned long)info;
11 - info->se_info.se_active_timer.function =

st21nfca_se_activation_timeout;
12 + setup_timer(&info->se_info.se_active_timer,

st21nfca_se_activation_timeout,
13 (unsigned long)info);
14
15 // C3
16 - init_timer(&np->s.timer);
17 - np->s.timer.data = (unsigned long)np;
18 - np->s.timer.function = sym53c8xx_timer;
19 + setup_timer(&np->s.timer, sym53c8xx_timer, (unsigned long)np);

Figure 1: Examples of timer initialization changes in the Linux kernel, showing the evolution from
multiple initialization steps to a single setup_timer call. These changes are semantically equiva-
lent, where the goal is to simplify the timer initialization.

formations, and (2) a relevance objective that learns to distinguish between related and unrelated
transformation patterns through discrimination learning. This dual objective enables the model to
both generate accurate transformations and recognize semantic relationships between different trans-
formation instances. Through this approach, our model can effectively adapt transformation patterns
from demonstrations to new inputs with different syntactic variations.

We evaluate our dual-learning adaptation technique on real-world code transformation tasks from the
Linux Kernel. The results demonstrate that our approach outperforms the standard supervised fine-
tuning by 20-21% in Exact Match accuracy across various model sizes. When compared to the state-
of-the-art pattern mining method for the Linux Kernel code transformation (Serrano et al., 2020), our
technique shows a substantial improvement of 35% in Exact Match, highlighting the effectiveness
of our dual-learning strategy to learn code transformation patterns from demonstrations and apply it
to the new input code. The replication package is available at https://anonymous.4open.
science/r/c-tuning/.

2 RELATED WORKS

Deep learning for code transformations. Deep learning models have demonstrated strong per-
formance across various software engineering tasks. Our work shares similarities with automated
program translation (Yang et al., 2024; Pan et al., 2024; Li et al., 2024; Liu et al., 2023), which
transforms programs between different programming languages while preserving semantics. While
program translation operates across languages, our work focuses on evolution-driven transforma-
tions within the same language. Our approach also relates to automated code repair (Zhang et al.,
2024; Fan et al., 2023; Hossain et al., 2024; Fu, 2023), where models learn to identify and fix buggy
code patterns. Both code repair and our work involve learning transformation patterns to maintain
system correctness, though we focus specifically on systematic evolution changes rather than indi-
vidual bug fixes. While the approach like Dilhara et al. (2024) focus on addressing limited change
examples in and Tufano et al. (2019) explore sequence-to-sequence models for code change automa-
tion, our work introduces a novel dual learning objective that better captures both the generation of
transformed code and the relevance between different transformation patterns.

Pattern-based code transformation. Several approaches have been proposed to learn code trans-
formations from examples. Early works like Sydit (Meng et al., 2011) and GENPAT (Jiang et al.,

2

https://anonymous.4open.science/r/c-tuning/
https://anonymous.4open.science/r/c-tuning/


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Paper under double-blind review

2019) focused on inferring transformations from single change examples, limiting their applicability
to complex evolution scenarios. LASE (Meng et al., 2013) advanced this by developing Abstract
Syntax Tree (AST) edit sequences from multiple examples, though it struggles with changes incor-
porating multiple variants. REFAZER (Rolim et al., 2017) introduced a domain-specific language
for transformation rules and employs clustering to handle variants, but like LASE, does not con-
sider control-flow dependencies. PyEvolve (Dilhara et al., 2023) employs graph-based matching
and specialized adaptation techniques but is specifically tailored for Python. Transformations in the
Linux kernel present unique challenges due to complex changes with identical semantics but diverse
syntax variants. Among pattern-based approaches, Spinfer (Serrano et al., 2020) demonstrates supe-
rior performance by considering both control-flow dependencies and multiple change variants when
deriving semantic patches for the Linux kernel. Given its effectiveness compared to other pattern-
based approaches, we use Spinfer as our baseline. In contrast to these pattern-based methods, our
approach leverages deep learning to naturally handle syntactic variations while capturing semantic
patterns, making it more adaptable across different contexts.

Dual Learning Framework. Prior works have explored dual learning frameworks to enhance
code generation tasks (Wei et al., 2019; Wang et al., 2024; Ye et al., 2020). These approaches pri-
marily focus on natural language to code generation tasks, using code summarization (code to natural
language) as an auxiliary objective. Our work differs fundamentally as we apply dual learning to
code transformation tasks, where we combine generative learning with a discrimination objective.
This novel combination enables our model to both generate accurate transformations and learn the
relationships between different transformation patterns, leading to better generation performance.
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) similarly leverage dual learn-
ing through generator and discriminator models to improve generation quality. However, unlike
GANs that rely on separate networks trained adversarially, our approach utilizes a single model that
jointly optimizes both generation and discrimination objectives. Furthermore, while GANs focus on
distribution matching between real and generated samples, our discrimination objective specifically
targets the semantic relationships between transformation patterns from code change examples.

3 METHODOLOGY

3.1 TASK DEFINITION

Given a set of demonstrations D = {(x1, y1), ..., (xk, yk)} where each pair consists of input code
xi and its transformed version yi, and a new input code xnew, the goal is to generate the target
transformed code ynew. Each demonstration pair captures the same underlying transformation pattern
that needs to be applied to xnew, as illustrated in Figure 1. Formally, we aim to model the conditional
probability in Equation 1,

p(ynew|xnew,D; θ) (1)

where θ represents the parameters of our neural model.

During training, we have a dataset of instances T = {(Di, x
i
new, y

i
new)}Ni=1 where each instance con-

tains a set of demonstrations, an input code, and its target transformation. The standard supervised
fine-tuning objective maximizes the log-likelihood as in Equation 2.

Lsup =

N∑
i=1

log p(yinew|xi
new,Di; θ) (2)

At inference time, given a new set of demonstrations Dtest and input code xtest, the model generates
the transformed code by Equation 3.

ytest = argmax
y

p(y|xtest,Dtest; θ) (3)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Paper under double-blind review

3.2 FINE-TUNING WITH DUAL OBJECTIVES FOR CODE TRANSFORMATION LEARNING

To better capture the semantic relationships between code transformations, we propose a dual learn-
ing paradigm that combines generation and discrimination objectives. In the fine-tuning stage, one
training instance is a triplet of (Ta, Tp, Tn) where Ta serves as an anchor, Tp as a positive example
sharing the same transformation semantics as the anchor, and Tn as a negative example that have
different transformation semantics as Ta.

The total training objective consists of two components as shown in Equation 4

Ltotal = Lgen + λLdis (4)

The generation loss Lgen is the standard next-token prediction objective computed for all instances
in the triplet as shown by Equation 5.

Lgen =
∑

t∈{a,p,n}

log p(ytnew|xt
new,Dt; θ) (5)

The discrimination loss Ldis is a binary classification objective that encourages the model to distin-
guish between related and unrelated transformation patterns. To compute this loss, we first obtain
the representation of each instance (Ta, Tp, Tn) from the decoder’s final layer hidden states. Specif-
ically, we use the last token’s hidden state vector which can attend to all previous tokens in the
sequence. Let hlast

a , hlast
p , and hlast

n represent the last token’s hidden states for the anchor, positive,
and negative instances respectively. The discrimination loss is then computed as in the Equation 6,

Ldis = − log p(1|[hlast
a ;hlast

p ])− log p(0|[hlast
a ;hlast

n ]) (6)

where [; ] denotes vector concatenation. The model learns to assign high probability when two
instances share the same transformation semantics (anchor and positive) and low probability when
they have different semantics (anchor and negative). Through this discrimination objective, the
model develops the ability to recognize and distinguish different transformation patterns.

By utilizing all instances in the triplet for the generative loss Lgen, our approach maximizes the
learning signal from each training batch. This design allows the model to learn from multiple trans-
formation instances simultaneously while also learning to distinguish between semantically similar
and different transformations through Ldis. The dual learning paradigm thus enhances the model’s
ability to both generate accurate transformations and understand the underlying semantic relation-
ships between different transformation patterns.

4 EXPERIMENTAL SETTING

4.1 DATASET

Our dataset is derived from real-world C source code changes in the Linux kernel codebase, orig-
inally collected in Serrano et al. (2020). Each instance consists of a pair of C code snippets rep-
resenting the state before and after a change. These changes are organized into directories, where
each directory contains changes that share the same semantic intent while having different syntactic
forms, as illustrated in Figure 1. For each function in the code, we extract the modified lines before
and after the transformation, which become the input and target code respectively.

We construct training triplets of an anchor, a positive example, and a negative example
(Ta, Tp, Tn). Each T represents a transformation instance defined as: T = (D, x, y) Here,
D = {(x1, y1), ..., (xk, yk)} is a set of demonstrations, x is the input code to be transformed, and y
is its target transformation. For each transformation instance, we randomly sample up to Nd demon-
strations to create D. To ensure diversity in the training data, we perform Ns rounds of sampling for
each triplet. We set both Nd and Ns to 5, striking a balance between capturing sufficient variations
and maintaining computational feasibility as we fine-tune the model in our local machine. For the
testing set, we use directories outside those that are used to create the training triplets. The final
dataset contains 19,143 triplets for training and 632 instances for testing.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Paper under double-blind review

Model Size Setting EM CodeBLEU BLEU METEOR ROUGE chrF

135M NTP 0.18 0.51 0.62 0.71 0.62 63.11

NTP + CLS (Ours) 0.39 0.62 0.75 0.82 0.74 76.95

360M NTP 0.58 0.72 0.84 0.87 0.84 87.03

NTP + CLS (Ours) 0.78 0.81 0.91 0.93 0.91 92.61

- Spinfer 0.43 0.44 0.50 0.51 0.50 51.17

Table 1: Performance comparison between our dual-learning framework and standard next token
prediction (NTP). All metrics show consistent improvements over the baseline NTP and Spinfer.

4.2 MODELS, BASELINES, AND METRICS

Models. We leverage SmolLM2 (Allal et al. (2025)) as our base model. We experiment with two
size variants: 135M1 and 360M2 parameters. We choose these models as these are one the latest
model that can still be fine-tuned in our local machine.

Baselines. We evaluate our dual-objective fine-tuning approach against several baselines:

• Next Token Prediction (NTP). The base model trained solely with the standard language
modeling objective (Equation 5). This baseline demonstrates the impact of incorporating
the discrimination loss in our approach.

• Spinfer. The current state-of-the-art approach for Linux Kernel code transformation (Ser-
rano et al. (2020)). Unlike our learning-based method, Spinfer employs clustering and
pattern mining techniques to analyze demonstrations and infer transformation rules.

• Contrastive Learning. We compare against two established contrastive learning ap-
proaches: InfoNCE (van den Oord et al. (2018)) and Triplet Loss (Schroff et al. (2015)).
Both methods learn semantic similarities between anchors, positive examples, and negative
examples in the embedding space. We also explore whether incorporating these contrastive
objectives into our method yields additional improvements.

Metrics. We employ multiple automated metrics that capture different aspects of code genera-
tion quality. We use Exact Match (EM) to measure perfect reproduction of the target code, and
CodeBLEU (Ren et al. (2020)) which specifically evaluates code similarity by considering syntac-
tic and semantic features. For general sequence similarity, we utilize smoothed BLEU-4 (Papineni
et al. (2002)), which measures precision by counting matching sequences between generated and
reference code, and METEOR (Banerjee & Lavie (2005)), which flexibly matches similar tokens
and considers word order, both widely adopted in generation tasks (Yusuf et al. (2023); Roy et al.
(2021)). We complement these with ROUGE@2 (Lin (2004)), which focuses on recall by checking
how much of the reference code is captured in the generation, and chrF (character n-gram order=6)
(Popovic (2015)) to capture character-level similarities, which is particularly relevant for code where
small differences can be significant.

5 RESULTS

5.1 COMPARISON WITH NEXT TOKEN PREDICTION OBJECTIVE

Table 1 presents the comparative evaluation of our dual-learning framework against the baseline
next token prediction (NTP) approach across two model sizes: 135M and 360M parameters. Our
approach (NTP + CLS) demonstrates consistent improvements across all metrics for both model
sizes. For the 135M model, adding the discrimination objective improves the exact match by 21%
(from 0.18 to 0.39) and achieves higher scores across all other metrics, with improvements ranging

1https://huggingface.co/HuggingFaceTB/SmolLM2-135M
2https://huggingface.co/HuggingFaceTB/SmolLM2-360M

5

https://huggingface.co/HuggingFaceTB/SmolLM2-135M
https://huggingface.co/HuggingFaceTB/SmolLM2-360M


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Paper under double-blind review

Model Size Setting EM CodeBLEU BLEU METEOR ROUGE chrF

135M

NTP + InfoNCE 0.18 0.52 0.62 0.72 0.62 63.00
NTP + Triplet 0.18 0.51 0.62 0.71 0.62 62.76

NTP + CLS + InfoNCE 0.38 0.62 0.74 0.81 0.73 76.30
NTP + CLS + Triplet 0.41 0.63 0.75 0.82 0.74 77.05

NTP + CLS (Ours) 0.39 0.62 0.75 0.82 0.74 76.95

360M

NTP + InfoNCE 0.57 0.72 0.83 0.86 0.83 86.09
NTP + Triplet 0.57 0.72 0.83 0.87 0.83 86.09

NTP + CLS + InfoNCE 0.77 0.81 0.91 0.93 0.91 92.72
NTP + CLS + Triplet 0.78 0.80 0.90 0.92 0.91 92.34

NTP + CLS (Ours) 0.78 0.81 0.91 0.93 0.91 92.61

Table 2: Performance comparison of our dual-learning framework (NTP + CLS) against contrastive
learning objectives (InfoNCE and Triplet Loss). Our approach consistently outperforms other meth-
ods across all metrics, demonstrating its effectiveness in enhancing model performance.

from 11-22%. The improvement of our approach is also similar with the 360M model, where we ob-
serve gains in exact match by 20% (from 0.58 to 0.78) and consistent improvements across all other
metrics, with gains ranging from 9-13% in the remaining metrics. These results demonstrate that
incorporating a discrimination objective alongside next token prediction leads to more robust and
accurate code transformation, with the benefits becoming more pronounced as model size increases.

5.2 COMPARISON WITH SPINFER

Our NTP + CLS approach with the 360M parameter model demonstrates substantial improvements
over the traditional pattern-mining Spinfer (Table 1). The 360M parameter model with NTP + CLS
achieves an exact match score of 0.78, indicating a 35% improvement over Spinfer (0.43). This
significant performance gap is consistent across all evaluation metrics: CodeBLEU (0.81 vs 0.44,
+37%), BLEU (0.91 vs 0.50, +41%), METEOR (0.93 vs 0.51, +42%), ROUGE (0.91 vs 0.50,
+41%), and chrF (92.61 vs 51.17, +41.44%). Notably, even our baseline NTP in the 360M model
substantially outperforms Spinfer, achieving a 15% higher exact match (0.58 vs 0.43) with consistent
improvements across all metrics.

Our 135M parameter model reveals interesting trade-offs in the context of code transformation.
When compared to Spinfer, our NTP + CLS model exhibits a distinct performance pattern: while
achieving a lower exact match score (0.39 vs 0.43), it consistently outperforms Spinfer across
similarity-based metrics, namely: CodeBLEU (0.62 vs 0.44), BLEU (0.75 vs 0.50), METEOR (0.82
vs 0.51), ROUGE (0.74 vs 0.50), and chrF (76.95 vs 51.17). This pattern can be attributed to the
fundamental differences in failure handling between the two approaches. Spinfer produces no output
when it fails to find a matching pattern, leading to lower scores in similarity-based metrics despite
maintaining a reasonable exact match. In contrast, our neural model always attempts to generate a
transformation. While these outputs may not exactly match the ground truth, they often capture par-
tial correctness, resulting in higher similarity scores. This behavior suggests that while our 135M
model demonstrates better generalization capabilities than Spinfer, it requires additional capacity
to consistently produce exact matches. These findings highlight the importance of model size in
achieving good performance across all metrics in the code transformation task.

5.3 COMPARING DISCRIMINATION AND CONTRASTIVE LEARNING OBJECTIVES

To better understand the role of discrimination objective in learning relationships between positive
and negative change examples, we conducted two sets of experiments. First, we examine whether
discrimination is more effective than alternative approaches by replacing the discrimination objec-
tive in our dual learning framework with two contrastive learning objectives: InfoNCE (van den
Oord et al. (2018)) and TripletLoss (Schroff et al. (2015)). Then, we investigate if combining these
objectives with discrimination could yield better performance. Both InfoNCE and TripletLoss are
designed to learn relationships between examples, but through different mechanisms. TripletLoss

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Paper under double-blind review

Model Size Setting EM CodeBLEU BLEU METEOR ROUGE chrF

135M
Mean Pooling 0.15 0.50 0.60 0.70 0.60 61.19

Max Pooling 0.08 0.42 0.49 0.58 0.49 53.06

Last Token 0.39 0.62 0.75 0.82 0.74 76.95

360M
Mean Pooling 0.59 0.72 0.84 0.87 0.83 86.39

Max Pooling 0.56 0.71 0.82 0.86 0.82 85.50

Last Token 0.78 0.81 0.91 0.93 0.91 92.61

Table 3: Performance comparison of mean pooling and max pooling versus last token representation
across different model sizes. The last token approach consistently outperforms mean pooling across
all evaluation metrics.

enforces a fixed margin between similarities, ensuring the distance between an input and its positive
example is smaller than the distance to the negative examples by at least a specified margin. In
contrast, InfoNCE learns through normalized similarity scores, maximizing the probability of iden-
tifying the positive example using a softmax over similarity scores between an anchor and all other
examples (both positive and negative).

Table 2 shows that both NTP + InfoNCE and NTP + Triplet Loss perform worse compared to our
NTP + CLS approach. For the 135M model, NTP + InfoNCE achieves an exact match of 0.18 and
NTP + Triplet achieves 0.18, while NTP + CLS reaches 0.39, showing a substantial improvement
of 21%. This performance gap is consistent across other metrics, with NTP + CLS outperforming
both contrastive learning variants by 10-13% in CodeBLEU, BLEU, METEOR, ROUGE, and chrF.
The gap widens further with the 360M model, where NTP + CLS achieves an exact match of 0.78,
outperforming NTP + InfoNCE (0.57) and NTP + Triplet (0.57) by 21%. Similar improvements
are observed across all metrics, with NTP + CLS showing 9-11% better performance. These re-
sults demonstrate that our discrimination-based approach is more effective than contrastive learning
objectives for this task.

Table 2 further shows that incorporating additional contrastive learning objectives (InfoNCE or
Triplet Loss) to our NTP + CLS framework yields slight improvements. For the 135M model, NTP
+ CLS + Triplet Loss achieves a higher exact match of 0.41 compared to 0.39 of NTP + CLS, while
NTP + CLS + InfoNCE achieves 0.38. Other metrics show similar patterns with both variants show-
ing 0-0.01 point improvements in BLEU (0.74-0.75 vs 0.75) and ROUGE (0.73-0.74 vs 0.74), and
about 0.1 point difference in chrF score. For the 360M model, both NTP + CLS + InfoNCE and NTP
+ CLS + Triplet achieve comparable exact match scores (0.77-0.78) to NTP + CLS (0.78). Other
metrics follow the same pattern with minimal differences across BLEU, METEOR, and ROUGE
scores, and less than 0.1 points in chrF score. These results suggest that while adding contrastive
objectives to NTP + CLS can provide marginal benefits, the discrimination objective alone achieves
strong performance.

5.4 IMPACT OF TOKEN REPRESENTATION STRATEGIES ON GENERATION PERFORMANCE

For the discrimination objective, we extract vector representations for comparing target pairs with
positive and negative examples. Our implementation utilizes the last token’s representation from the
final decoder layer, leveraging its ability to attend to all prior tokens in the sequence. To validate
this design choice, we conducted a comparative analysis between this approach and an alternative
that uses mean pooling and max pooling for aggregating representations. The subsequent steps
remain consistent across both variants: we concatenate the input pair’s representation with that
of the positive example and train the model to predict 1 for relevant pairs, while predicting 0 for
negative (irrelevant) pairs.

The results in Table 3 demonstrate that the last token approach consistently outperforms both mean
pooling and max pooling across all metrics. For the 135M model, using the last token representation
significantly improves the exact match from 15% to 39%, while max pooling performs notably worse
with only 8% exact match. This improvement pattern is consistent in the 360M model, where the
last token approach achieves 78% exact match compared to 59% with mean pooling and 56% with

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Paper under double-blind review

0.25 0.50 0.75 1.00
Alpha

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

135M Model

0.25 0.50 0.75 1.00
Alpha

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

360M Model

Exact Match
CodeBLEU
BLEU
METEOR
ROUGE
chrF

Figure 2: Performance comparison of different metrics across two model sizes (135M and 360M
parameters) with varying α values. For both models, (α = 0.5) generally yield better performance
across all metrics. All metrics are normalized to the range [0,1] for consistent comparison.

max pooling. The improvements extend beyond exact match, with the last token approach showing
relative gains of 12-15% across CodeBLEU, BLEU, METEOR, ROUGE, and chrF metrics for the
135M model, and 9-11% for the 360M model. These findings support our hypothesis that the last
token’s ability to attend to all prior tokens makes it a more effective representation strategy than both
mean pooling and max pooling approaches.

5.5 IMPACT OF DIFFERENT ALPHA VALUES ON GENERATION PERFORMANCE

The alpha value (α) controls the contribution of discrimination loss in our dual learning objective
(Equation 4), where higher values emphasize the model’s ability to distinguish between different
transformation patterns. To understand its impact better, we evaluated model performance across
multiple alpha values: {0.25, 0.5, 0.75, 1.0}.

The results in Figure 2 show that the alpha (α) parameter plays a key role in model performance.
Both models perform best with α=0.5, where the 135M model reaches 0.39 exact match score while
the 360M model achieves 0.78. We found that the 360M model’s performance drops notably when
alpha deviates from 0.5, falling to 0.70 at α=1.0. The same pattern holds across other metrics where
α=0.5 consistently yields the best results. The smaller 135M model follows a similar trend, where
the performance peaks at α=0.5 with a score of 0.39, and gradually declines to 0.35 when α=1.0,
though the variation is less pronounced compared to the 360M model. These results highlight an
important practical finding: careful tuning of alpha is crucial for both model sizes. Setting α=0.5
yields the best result in the code transformation task.

5.6 IMPACT OF TRAINING TRIPLET COUNT ON GENERATION PERFORMANCE

Understanding how our approach’s performance scales with training data is crucial for real-world
deployments, where data availability may vary. Figure 3 presents the relationship between the num-
ber of triplets seen during fine-tuning and exact match for two model architectures: 135M and 360M
parameters. We compare three model variants: NTP + CLS (Ours), NTP, and Spinfer (shown as a
red dashed line).

For the 135M model, increasing the number of training triplets leads to substantial improvements
in exact match for both NTP + CLS and NTP. Our approach consistently outperforms the NTP
baseline across all data regimes. With limited data (3,000 triplets), both approaches struggle to
learn meaningful patterns, achieving 0% exact match. However, as we increase the training data to
9,000 triplets, NTP + CLS shows a significant jump to 24% exact match, compared to NTP’s 11%.
This improvement continues with the full dataset (19,140 triplets), where NTP + CLS achieves 39%
exact match. However, this result still falling slightly short of Spinfer’s 43% baseline. While this
represents a significant improvement, it still falls short of Spinfer with 43% exact match, suggesting
that the limited capacity of the 135M model may be a bottleneck.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Paper under double-blind review

3000 9000 19140
Triplet Seen

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ac

t M
at

ch

135M Model

3000 9000 19140
Triplet Seen

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ac

t M
at

ch

360M Model

NTP
NTP+CLS
Spinfer

Figure 3: Comparison of exact match accuracy between NTP + CLS and NTP across different
training data sizes. The exact match of NTP + CLS shows steady improvement with increasing data
until approximately 70% of the training data, after which the gains become more gradual.

For 360M model, NTP + CLS exhibits substantial gains as more triplets are seen during fine-tuning.
Starting from 13% exact match with 3,000 triplets, it rapidly improves to 73% with 9,000 triplets.
The improvement continues with the full dataset, reaching 78% exact match, though the rate of
gain starts to diminish after 9,000 triplets. This pattern suggests that while additional training data
beyond 9,000 triplets still contributes to performance improvements, the marginal benefits begin to
diminish. Interestingly, the baseline NTP demonstrates strong initial performance, achieving 56%
exact match even with limited data. However, the performance does not increase further after seeing
more data during fine-tuning. Both neural approaches (NTP + CLS and NTP) eventually outperform
Spinfer’s 43% baseline in this larger model setting. These results highlight the importance of model
capacity in effectively learning code transformation patterns from the training data.

6 CONCLUSION

In this work, we presented a deep learning-based approach for automating consistent code transfor-
mations in large-scale software systems. By leveraging a dual-learning adaptation technique, our
model simultaneously optimizes code generation and pattern discrimination, enabling it to gener-
alize transformations across diverse contexts while preserving semantic intent. Our evaluation on
real-world Linux Kernel transformation tasks demonstrated that our method outperforms standard
supervised fine-tuning by 20-21% in Exact Match accuracy and achieves a 35% improvement over
the traditional pattern mining technique. These results highlight the effectiveness of our approach in
capturing and applying transformation patterns from demonstrations.

Future work includes extending our framework to handle more complex transformations involving
structural code modifications, incorporating broader context, and exploring techniques to further
enhance model interpretability and trustworthiness for the resulting transformation code.

REFERENCES

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martı́n Blázquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlı́ček, Agustı́n Piqueres Lajarı́n, Vaibhav Srivastav,
et al. Smollm2: When smol goes big–data-centric training of a small language model. arXiv
preprint arXiv:2502.02737, 2025.

Satanjeev Banerjee and Alon Lavie. METEOR: an automatic metric for MT evaluation with im-
proved correlation with human judgments. In IEEvaluation@ACL, pp. 65–72. Association for
Computational Linguistics, 2005.

Malinda Dilhara, Danny Dig, and Ameya Ketkar. PYEVOLVE: automating frequent code changes
in python ML systems. In ICSE, pp. 995–1007. IEEE, 2023.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Paper under double-blind review

Malinda Dilhara, Abhiram Bellur, Timofey Bryksin, and Danny Dig. Unprecedented code change
automation: The fusion of llms and transformation by example. Proc. ACM Softw. Eng., 1(FSE):
631–653, 2024.

Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei Tan. Automated
repair of programs from large language models. In ICSE, pp. 1469–1481. IEEE, 2023.

Michael Fu. Toward more effective deep learning-based automated software vulnerability predic-
tion, classification, and repair. In ICSE Companion, pp. 208–212. IEEE, 2023.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Generative adversarial networks. CoRR, abs/1406.2661,
2014.

Soneya Binta Hossain, Nan Jiang, Qiang Zhou, Xiaopeng Li, Wen-Hao Chiang, Yingjun Lyu,
Hoan Anh Nguyen, and Omer Tripp. A deep dive into large language models for automated
bug localization and repair. Proc. ACM Softw. Eng., 1(FSE):1471–1493, 2024.

Jiajun Jiang, Luyao Ren, Yingfei Xiong, and Lingming Zhang. Inferring program transformations
from singular examples via big code. In ASE, pp. 255–266. IEEE, 2019.

Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang. A systematic review of API evolution
literature. ACM Comput. Surv., 54(8):171:1–171:36, 2022.

Jun Li, Yingfei Xiong, Xuanzhe Liu, and Lu Zhang. How does web service API evolution affect
clients? In ICWS, pp. 300–307. IEEE Computer Society, 2013.

Xuan Li, Shuai Yuan, Xiaodong Gu, Yuting Chen, and Beijun Shen. Few-shot code translation via
task-adapted prompt learning. J. Syst. Softw., 212:112002, 2024.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Fang Liu, Jia Li, and Li Zhang. Syntax and domain aware model for unsupervised program transla-
tion. In ICSE, pp. 755–767. IEEE, 2023.

Na Meng, Miryung Kim, and Kathryn S. McKinley. Sydit: creating and applying a program trans-
formation from an example. In SIGSOFT FSE, pp. 440–443. ACM, 2011.

Na Meng, Miryung Kim, and Kathryn S. McKinley. LASE: locating and applying systematic edits
by learning from examples. In ICSE, pp. 502–511. IEEE Computer Society, 2013.

Yoann Padioleau, Julia L. Lawall, and Gilles Muller. Understanding collateral evolution in linux
device drivers. In EuroSys, pp. 59–71. ACM, 2006.

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lambert Pouguem Wassi,
Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha, and Reyhaneh Jabbarvand. Lost
in translation: A study of bugs introduced by large language models while translating code. In
ICSE, pp. 82:1–82:13. ACM, 2024.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In ACL, pp. 311–318. ACL, 2002.

Maja Popovic. chrf: character n-gram f-score for automatic MT evaluation. In WMT@EMNLP, pp.
392–395. The Association for Computer Linguistics, 2015.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis.
CoRR, abs/2009.10297, 2020.

Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit Gulwani, Rohit
Gheyi, Ryo Suzuki, and Björn Hartmann. Learning syntactic program transformations from ex-
amples. In ICSE, pp. 404–415. IEEE / ACM, 2017.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Paper under double-blind review

Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova. Reassessing automatic evaluation metrics
for code summarization tasks. In ESEC/SIGSOFT FSE, pp. 1105–1116. ACM, 2021.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In CVPR, pp. 815–823. IEEE Computer Society, 2015.

Lucas Serrano, Van-Anh Nguyen, Ferdian Thung, Lingxiao Jiang, David Lo, Julia Lawall, and
Gilles Muller. SPINFER: inferring semantic patches for the linux kernel. In 2020 USENIX
Annual Technical Conference, pp. 235–248. USENIX Association, 2020. URL https://www.
usenix.org/conference/atc20/presentation/serrano.

Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and Denys Poshyvanyk.
On learning meaningful code changes via neural machine translation. In ICSE, pp. 25–36. IEEE
/ ACM, 2019.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. CoRR, abs/1807.03748, 2018.

Jiaying Wang, Lijun Cao, Jing Shan, Xiaoxu Song, and Junyi Jiang. Dual learning model of code
summary and generation based on transformer. In WISA, volume 14883 of Lecture Notes in
Computer Science, pp. 41–52. Springer, 2024.

Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. Code generation as a dual task of code summa-
rization. In NeurIPS, pp. 6559–6569, 2019.

Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Wai Keung, Jia Li, Shuo Liu, Yifan Hong, Xiaoxue Ma,
Zhi Jin, and Ge Li. Exploring and unleashing the power of large language models in automated
code translation. Proc. ACM Softw. Eng., 1(FSE):1585–1608, 2024.

Wei Ye, Rui Xie, Jinglei Zhang, Tianxiang Hu, Xiaoyin Wang, and Shikun Zhang. Leveraging
code generation to improve code retrieval and summarization via dual learning. In WWW, pp.
2309–2319. ACM / IW3C2, 2020.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig. Learning to
mine aligned code and natural language pairs from stack overflow. In MSR, pp. 476–486. ACM,
2018.

Imam Nur Bani Yusuf, Diyanah Binte Abdul Jamal, and Lingxiao Jiang. Automating arduino pro-
gramming: From hardware setups to sample source code generation. In MSR, pp. 453–464. IEEE,
2023.

Quanjun Zhang, Chunrong Fang, Yuxiang Ma, Weisong Sun, and Zhenyu Chen. A survey of
learning-based automated program repair. ACM Trans. Softw. Eng. Methodol., 33(2):55:1–55:69,
2024.

11

https://www.usenix.org/conference/atc20/presentation/serrano
https://www.usenix.org/conference/atc20/presentation/serrano

	Introduction
	Related works
	Methodology
	Task definition
	Fine-tuning with dual objectives for code transformation learning

	Experimental setting
	Dataset
	Models, baselines, and metrics

	Results
	Comparison with next token prediction objective
	Comparison with Spinfer
	Comparing discrimination and contrastive learning objectives
	Impact of token representation strategies on generation performance
	Impact of different alpha values on generation performance
	Impact of training triplet count on generation performance

	Conclusion

