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Abstract—Writing code for Arduino poses unique challenges.
A developer 1) needs hardware-specific knowledge about the
interface configuration between the Arduino controller and the
I/O hardware, 2) identifies a suitable driver library for the I/0
hardware, and 3) follows certain usage patterns of the driver
library in order to use them properly. In this work, based on a
study of real-world user queries posted in the Arduino forum, we
propose ArduinoProg to address such challenges. ArduinoProg
consists of three components, i.e., Library Retriever, Configura-
tion Classifier, and Pattern Generator. Given a query, Library
Retriever retrieves library names relevant to the I/O hardware
identified from the query using vector-based similarity matching.
Configuration Classifier predicts the interface configuration be-
tween the I/0 hardware and the Arduino controller based on the
method definitions of each library. Pattern Generator generates
the usage pattern of a library using a sequence-to-sequence deep
learning model. We have evaluated ArduinoProg using real-
world queries, and our results show that the components of
ArduinoProg can generate accurate and useful suggestions to
guide developers in writing Arduino code.

Demo video: bit.ly/3Y3aeBe
Tool: https://huggingface.co/spaces/imamnurby/ArduinoProg
Code and data: https://github.com/imamnurby/ArduProg

Index Terms—arduino programming, information retrieval,

code generation, deep learning

I. INTRODUCTION

Arduino projects typically consist of three main compo-
nents: a controller, one or more I/O hardware (e.g., temperature
sensor) that are connected to the controller to interact with
the environment, and software code that define the logic of
the system. Writing Arduino code poses unique challenges
because of the involvement of both hardware and software
components.

First, Arduino coding may require a developer to configure
the interface between the Arduino controller and the I/O
hardware. The interface configuration between the code and
physical hardware should be consistent to ensure the system
works properly. For instance, in Fig. 1, a developer connects
a servo to interface number 10 in the physical space. Conse-
quently, the developer should also configure the Servo object in
the code using interface number 10 (myServo.attach(pin=10)).
Choosing the correct interface for an I/O hardware may
require domain-specific knowledge that a developer may not
be familiar with [1], [2].

Second, there is a wide range of driver libraries available.
Each driver library may have its own set of API usage patterns,
as illustrated by the few lines of code on the top of Fig. 1.
Developers may not be familiar with such usage patterns due
to the large number of libraries and usage patterns available.

Servo myServo;
myServo. attach (pin=10);
myServo. write (10)

Other possible pin
numbers, 0-9 and
11-13

Pin number 10

Fig. 1. An example of how the setup in the physical space and code should
match. The servo should be connected to the interface number 10 because the
servo motor is initialized using interface number 10 in the code.

To address the aforementioned challenges, we propose Ar-
duinoProg, a tool to assist developers in identifying relevant
driver libraries, as well as suggesting suitable interface config-
urations and usage patterns based on natural language queries.
Based on our preliminary study of Arduino forum posts [3],
we have developed ArduinoProg as an integration of three
main components, i.e., Library Retriever, Configuration Clas-
sifier, and Pattern Generator. First, Library Retriever utilizes
NLP techniques to analyze the query’s grammatical structure,
extract keywords, and retrieve relevant library names. Second,
Configuration Classifier extracts method definitions from each
library, encode them into feature vectors using a deep learn-
ing model, and predicts the interface configuration using a
classifier. Third, Pattern Generator employs a deep learning
sequence-to-sequence model to generate the usage patterns of
each library.

We have evaluated ArduinoProg on real-world queries by
leveraging various machine learning models to instantiate
each components. Library Retriever can achieve 0.64-0.97 and
Pattern Generator yields 0.32-0.73 in terms of Normalized
Discounted Cumulative Gain; the performance of Config-
uration Classifier ranges from 0.79-0.85 in terms of Area
Under the Receiver Operating Characteristics Curve. Such
results indicate that ArduinoProg can possibly produce useful
suggestions to guide developers in writing Arduino code.

In summary, our contributions are as follows: 1) we propose
ArduinoProg, the first tool that can identify the relevant I/O
hardware libraries and suggest its pin configurations and API
usage patterns, and 2) we open source the implementation of
ArduinoProg, along with the training and testing data.

II. RELATED WORKS

Several empirical studies have been conducted in the field
of embedded development [1], [4] . Makhshari and Mesbah [1]
confirm the challenging nature of IoT (Internet of Things)



embedded development, emphasizing the need for hardware-
specific knowledge. Uddin et al. [4] discover that microcon-
troller configuration is among the top three most discussed
IoT-related topics on StackOverflow.

Several works have been proposed to recommend relevant
API usage patterns based on natural language queries [S5]-[8].
However, solely generating API usage patterns is insufficient
for Arduino applications, as developers need to configure the
interface in the physical space and code. By leveraging our
tool, developers can discover the API usage patterns and
also the necessary configurations for a library, providing a
comprehensive solution for Arduino application development.

III. ARDUINOPROG

A. Design Background

The design of ArduinoProg is motivated by our prior
work [3], where we studied real-world user questions from
the Arduino Discussion Forum. This study provided three
key insights. First, driver libraries have specific API usage
patterns. Because many driver libraries available, it becomes
necessary to have a component that can automatically generate
such patterns. This finding motivates the need of Pattern
Generator. Second, we discovered that driver libraries can
be categorized into four configuration categories based on
the communication protocol of the I/O hardware: address-
based (I12C), Serial (SPI), Asynchronous (UART), and Explicit.
Furthermore, method definitions of hardware within the same
communication protocol often share similar tokens, as depicted
in Fig. 2. This finding allows us to formulate the problem of
inferring interface configuration to classifying method defini-
tions into the correct configuration category, thus motivating
the design of Configuration Classifier. Last, we found that both
the interface configuration and API usage pattern of a driver
library are independent of other driver libraries. Therefore, we
can first identify the I/O hardware in the input query and then
individually predict the interface configuration and generate
the API usage pattern for each identified I/O hardware. This
insight motivates the design of Library Retriever.

DHT12 (Temperature Sensor)
int DHT12::_readSensor(){

_wire->beginTransmission(DHT12_ADDRESS);
_wire->write(0);

int rv = _wire->endTransmission();

if (rv < 0) return rv;

int bytes = _wire->requestFrom(DHT12_ADDRESS, length);
.

ADSI1X15 (Analog to Digital Comparator)

uintl6_t ADS1X15::_readRegister(uint8_t address, uint8_t reg){

_wire->beginTransmission(address);
_wire->write(reg);

_wire->endTransmission();

int rv = _wire->requestFrom((int) address, (int) 2);
if (rv==2)

.}

Fig. 2. Fragments of two method definitions to get the sensor value from the
register memory of the hardware. Both method definitions involves similar
tokens such as “wire”, “beginTransmission”, and "rv” .

B. Workflow
Fig. 3 illustrates the high-level workflow of ArduinoProg.

Given a natural language query, (D Library Retriever recom-
mends relevant libraries. For each library, ) Configuration
Classifier predicts the interface configuration and () Pattern
Generator generates the API usage patterns.

Pattern Generator
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Fig. 3. The components of ArduinoProg.

The workflow of ArduinoProg consists of two phases, i.e.,
training and inference. In the training phase, we train a set of
models to perform the required tasks. In the inference phase,
ArduinoProg is ready to interact with a developer.

Training. First, we train Retriever in (D to suggest relevant
driver libraries based on the input query. We leverage Triplet
Loss [9] for training the retrieval model. Each training instance
is a triplet, comprising an anchor, a positive sample, and a
negative sample. The anchor corresponds to a library name,
while the positive sample is a library name that is relevant to
the anchor. In contrast, the negative sample is an irrelevant
library name. In this context, a relevant library is the driver
library that supports same I/O hardware. The training objective
is to minimize the distance between the anchor and positive
sample in the vector space, while maximizing the distance
between the anchor and negative sample.

Second, we train Configuration Classifier’s Encoder and
Classifier Head in @) to predict the interface configuration
given the method definitions of a driver library. One training
instance is a set of method definitions paired with the ground
truth configuration category. Given one training instance,
Configuration Classifier’s Tokenizer transforms the method
definitions into a list of subword token ids. Configuration
Classifier’s Encoder converts each token id into a feature
vector. Classifier Head takes the the list of feature vectors to
predict the configuration category. Subsequently, the loss is by
comparing the predicted category with the ground truth using
Cross Entropy [10]. The computed loss is used to update the
model’s parameters.

Third, we train Pattern Generator’s Encoder and Pattern
Generator’s Decoder in ® to generate the usage patterns
of a driver library. One training instance is a library name
paired with its ground truth usage pattern. Given one training
instance, Preprocessor appends the the hardware classname to
the library name. Then, Pattern Generator’s tokenizer trans-
forms the processed library name into a list of subword token
ids. Pattern Generator’s Encoder converts each token id into
a feature vector. Pattern Generator’s Decoder takes the list of
feature vectors to generate the usage patterns. The model’s



parameters are updated by computing the loss between the
generated usage pattern and the ground truth using Cross
Entropy as the loss function.

Inference. Given a natural language query, (D Library
Retriever leverages Keywords Extractor to omit unimportant
tokens (e.g., conjunctions) and output a list of keywords (i.e.,
tokens that are most likely to appear in a library name).
Keywords Extractor extracts the noun phrases (a root noun
+ its modifiers) from the query by analyzing its grammatical
structure using dependency parser For example, given a query
”Using BMP280 sensor to control a DC motor”, the noun
phrases are "BMP280 sensor” and "DC motor”. For each noun
phrase Keywords Extractor extracts the token that corresponds
to an I/O hardware name by checking whether a token con-
sists of alphanumeric letters. We use such a heuristic since
most hardware names comprise alphanumeric letters (e.g.,
BMP280). If our heuristic fails to extract a hardware name,
Keywords Extractor uses the root noun of the noun phrase as
the keyword, e.g., motor” in ”dc motor”.

Retriever’s Tokenizer convert each keyword into a list of
token ids. Retriever converts the list of token ids to a vector
and computes the similarity between this vector with the
available library name vectors. The result is an unordered list
of K x m library names, where K is the top-K results and m
is the number of keywords. Finally, Ranker outputs a ranked
list of K library names.

Given a library name, Q) Configuration Classifier leverages
Method Retriever to retrieve the library’s .cpp files and then
extracts the method definitions. The subsequent steps are the
same as in the training phase, but without updating the model’s
parameters. After predicting the configuration category, we
map the category to the interface configuration using a prede-
fined dictionary.

Similarly, 3 Pattern Generator takes the library name as
the input. The remaining steps are the same as in the training
phase, but the without updating the model’s parameters.

C. Tool Usage

Envisioned Users. ArduinoProg caters to both developers
who are familiar with I/O hardware and those who are not. For
developers who already know the I/O hardware they want to
use, ArduinoProg enables them to identify the driver library
for that I/O hardware, infer its interface configuration, and
generate its API usage pattern. Furthermore, by describing
the high-level functionality (e.g., ’sensor to measure temper-
ature”), ArduinoProg allows developers who are uncertain of
using which I/O hardware to identify the I/O hardware that
perform the described functionality.

Usage. Developers can access https://huggingface.co/
spaces/imamnurby/ArduinoProg to use ArduinoProg, then
input a suitable query and ArduinoProg will return a
set of results. Developers can also locally train and
deploy ArduinoProg by following the instructions in
https://github.com/imamnurby/ArduProg.

IV. EVALUATION
A. Experimental Setting
Library Retriever. As we explained in Section III, the

training data is a triplet of (anchor, positive sample, negative
sample) We create the Triplet as follows. We crawl 4,309
library names from the library reference [11]. We iterate
through each library name, extract the hardware name, then
remove the frequent tokens. For each anchor, we sample 50
positive and negative samples. The number of training triplets
is 234,577. For the testing set, we use 35 posts that we
collected in the prior study [3]. We use the question title as the
query as it often summarizes the question’s main idea [12].

We evaluate Library Retriever by instantiating Retriever
(see D in Fig. 3) using CodeBERT [13], RoBERTa [14], and
BM25 [15].

Configuration Classifier. For the training data, we crawl
the hardware libraries listed in the library reference [11].
We extract the method definitions using tree-sitter [16]. For
the ground truths, we manually annotate the libraries with
its supported communication protocol. For the testing data,
we feed the real-world posts that we collected in the prior
study [3] to Library Retriever, take the top 10 libraries for
each query, and extract the method definitions. The number of
testing instances is 290.

We evaluate Configuration Classifier by instantiating Con-
figuration Classifier’s Encoder using CodeBERT [13] and
Classifier Head using Dense Layer, SVM (Support Vector
Machine) [17], and RF [18] (Random Forest) (see Q) in Fig. 3).

Pattern Generator. We crawl 106,777 client files from
GitHub and extract the API usage patterns of I/O hardware in
those client files by traversing the abstract syntax tree using
tree-sitter [16]. The number of training instances is 84,222. For
the testing data, we leverage the codes attached in the forum
posts that we collected in the prior study [3]. We manually
extract the API usage patterns in each code. The number of
testing instances is 31.

We evaluate Pattern Generator by instantiating Pattern
Generator’s Encoder and Decoder (see 3 in Fig. 3) using
CodeBERT [13], CodeT5 [19], and DeepAPI [20].

B. Evaluation Metrics

NDCG. We use Normalized Discounted Cumulative Gain
(NDCQG) to evaluate Library Retriever and Pattern Generator.
NDCG measures how close a result is to the ground truth
using a relevancy function and weights the relevancy score by
its ranking in the result list. NDCG ranges from O to 1. For the
relevancy score, we use binary for evaluating Library Retriever
and ROUGE score and Longest Common Subsequences (LCS)
for evaluating Pattern Generator.

AUC. We use AUC (Area Under the Receiver Operat-
ing Characteristics) to evaluate Configuration Classifier. AUC
measures how well a classifier can differentiate each target
class of a classifier. AUC ranges between O and 1.

C. Baselines

There is no comparable tool for automating Arduino pro-
gramming because as far as we know, ArduinoProg is the
first tool that can generate both hardware configuration and



API usage patterns. We only evaluate and compare variants
of ArduinoProg by instantiating its components using various
machine learning models.

D. Results
Library Retriever. Table I shows the evaluation results

of Library Retriever. Overall, CodeBERT performs the best
among the other models, with the average NDCG 0.78, fol-
lowed by BM25 and RoBERTa. Without performing keyword
extraction, the performance of CodeBERT, RoBERTa, and
CodeBERT degrades by 0.42, 0.43, and 0.39 on average.
Such results demonstrate that our keyword extraction can
significantly improve the performance.

TABLE I
THE EVALUATION RESULTS OF LIBRARY RETRIEVER.
NDCG@K
Model K=1 K=5 K=10 Average
BM25 0.77  0.71 0.64 0.71
RoBERTa 089  0.68 0.53 0.70
CodeBERT | 097 0.74 0.62 0.78

Configuration Classifier. Table II shows the evaluation
results of Configuration Classifier. The overall results indicate
that SVM yields the best performance, with an average AUC
of 0.85. For Dense and Random Forest, the low AUC values
are caused by UART and SPI classes. The possible reason is
that UART and SPI classes have fewer training samples (i.e.,
19 and 45) than 12C and Digital/Analog I/O (i.e., 159 and 98).

TABLE I
THE EVALUATION RESULTS OF CONFIGURATION CLASSIFIER.

Average AUC per Class
Model | UART  SPI 12C  Explicit | Averase
Dense | 066 068 091 090 079
SVM | 08 08 08 089 0.85
RE 069 069 090 091 0.80

Pattern Generator. Table III shows the evaluation results
of Pattern Generator. Overall, CodeBERT and DeepAPI yield
competitive performance in terms of NDCG-ROUGE@K and
NDCG-LCS@K. A high NDCG-ROUGE@K and NDCG-
LCS@K mean that the APIs in the ground truths are likely to
appear in the generated API sequences .

TABLE III
THE EVALUATION RESULTS OF PATTERN GENERATOR.
NDCG@K
Model ROUGE LCS
K=1 K=5 K=10 K=1 K=5 K=10
DeepAPI 0.71 0.69 0.69 0.64  0.64 0.64
CodeBERT | 0.73  0.69 0.69 0.65  0.60 0.59
CodeT5 0.52 046 0.45 034 033 0.32

V. CONCLUSION

We propose ArduinoProg to address the challenges when
writing Arduino code. Given a query in natural language,
ArduinoProg recommends the relevant libraries, the interface
configurations, and the usage patterns of each library. Our
evaluation results using real-world queries indicate that Ar-
duinoProg can possibly produce useful suggestions to guide
developers in writing Arduino code. In the future, we intend to
release the tool to the Arduino community and conduct a user
study to gather feedback and further enhance its functionality.
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